
Cluster-based communication and load

balancing for simulations on dynamically

adaptive grids

Martin Schreiber and Hans-Joachim Bungartz

Technische Universität München
martin.schreiber@in.tum.de, bungartz@in.tum.de

Abstract

The present paper introduces a new communication and load-balancing scheme based
on a clustering of the grid which we use for the efficient parallelization of simulations on
dynamically adaptive grids.

With a partitioning based on space-filling curves (SFCs), this yields several advanta-
geous properties regarding the memory requirements and load balancing. However, for
such an SFC-based partitioning, additional connectivity information has to be stored and
updated for dynamically changing grids.

In this work, we present our approach to keep this connectivity information run-length
encoded (RLE) only for the interfaces shared between partitions. Using special prop-
erties of the underlying grid traversal and used communication scheme, we update this
connectivity information implicitly for dynamically changing grids and can represent the
connectivity information as a sparse communication graph: graph nodes (partitions) rep-
resent bulks of connected grid cells and each graph edge (RLE connectivity information)
a unique relation between adjacent partitions. This directly leads to an efficient shared-
memory parallelization with graph nodes assigned to computing cores and an efficient en
bloc data exchange via graph edges. We further refer to such a partitioning approach with
RLE meta information as a cluster-based domain decomposition and to each partition as a
cluster. With the sparse communication graph in mind, we then extend the connectivity
information represented by the graph edges with MPI ranks, yielding an en bloc commu-
nication for distributed-memory systems and a hybrid parallelization. For data migration,
the stack-based intra-cluster communication allows a very low memory footprint for data
migration and the RLE leads to efficient updates of connectivity information.

Our benchmark is based on a shallow water simulation on a dynamically adaptive grid.
We conducted performance studies for MPI-only and hybrid parallelizations, yielding an
efficiency of over 90% on 256 cores. Furthermore, we demonstrate the applicability of
cluster-based optimizations on distributed-memory systems.

1 Introduction

Solvers for partial differential equations (PDE) which rely on a space-filling curve (SFC) de-
composition of the underlying grid are very common in scientific computing [1,7,8,16,21,22,28].
These solvers recursively decompose the grid into typically non-overlapping primitives which
are ordered along the SFC, hence resulting in a spacetree [12,20,21,21,30]. The leaves of such a
spacetree then represent the grid cells and the traversal can then be either done recursively [28]
or in a linearized way [7] traversing only the leaf nodes.

For a parallelization, a frequently chosen approach for distributed-memory systems is the
partitioning of the simulation grid. Such a partitioning aims at optimizing the interfaces shared
among partitions, e.g. by reducing the number of edge-cuts of the dual graph [26]. Using graph-
based partitioners requires complex operations [5] and typically results in an NP-hard problem

1

Preprint version
http://www.sciencedirect.com/science/article/pii/S187705091400386X



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

A
B
CD

E

F
G
H I J

KL

Figure 1: Left: Triangulated cubed sphere with the arrows annotating the connectivity in-
formation. Right: Visualization of the water surface and terrain with the colouring based
on the water and terrain height and the underlying dynamically adaptive triangular grid of a
finite-volume [13] simulation of the Tohoku Tsunami 2011 on a triangulated cubed sphere grid.

[32]. Since our simulations are wave-propagation dominated (see right image in Fig. 1), resulting
in a frequently changing grid structure, these partitioners are not efficiently applicable. An
alternative is given by SFCs inducing an ordering of the grid primitives. Then, an enumeration
of them can be used for efficient load-balancing strategies for dynamically adaptive grids. Here,
the one-dimensional grid representation is cut into partitions of a balanced amount of cells [5]
and each partition also retains locality properties of the d-dimensional space [19]. Using such an
SFC partitioning leads to faster load balancing for dynamically adaptive grids with partitions
still close to optimality regarding the edge-cut of graph-based partitioners [18]. Therefore, we
use an SFC-based partitioning approach with the one-dimensional intervals generated by tree
splits which are naturally given by splitting the spacetree into sub trees.

Solving a PDE on such spacetree-induced grids requires efficient access of per-primitive
stored simulation data as well as efficient exchange of data, e.g. via edges. Considering solvers
for hyperbolic equations, a possible access pattern gathers data at edges which are shared by
adjacent grid primitives. Such an access of edge-oriented data exchange should be designed in a
way to reduce the amount of accessed memory under consideration of the memory hierarchy to
tackle the increasing gap between computational power and memory bandwidth [6]. Different
methods are researched in this context and are e.g. based on lists [7] or a stack- and stream-based
approach [12, 21, 29] with the latter one used in this work.

In combination with a domain decomposition, connectivity information is required to ex-
change data via edges shared among adjacent partitions and we continue referring to this
connectivity information as meta information. Such a meta information is either stored for
each grid primitive (e.g. using unstructured grids, resulting in a dense connectivity graph), or
for each interface shared between partitions (see e.g. [17, 27] for edge communication, further
denoted as a semi-sparse connectivity graph) .

Furthermore, dynamically changing grids demand for a repartitioning and load balancing.
Therefore, the meta information also has to be updated to assure a consistent connectivity.
Methods studied so far for semi-sparse connectivity graphs are based on per-edge communicated
adjacency information, and are efficiently applicable with MPI parallelization [17,27]. However,
this update scheme of meta information still relies on the enumeration of all cells which is stored
for each edge shared by partitions.

2



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

2 Contribution

In this work, we present a meta information management resulting in a sparse connectivity graph
for a given SFC-based domain decomposition which supports the stack-based communication:
Here, each partition is represented as a graph node and a consecutive number of shared interfaces
among two partitions is represented with a unique run-length encoded (RLE) entry in the per-
partition stored meta information.

After introducing the former work on stack- and stream-based simulations in Sec. 3.1, we
present our cluster-based parallelization on distributed-memory systems:

(a) Run-length encoded meta information and clustering (Section 3.2):
We present an en bloc data exchange for efficient shared- and distributed-memory commu-
nication.

(b) Updating meta information for dynamically adaptive grids (Section 3.3):
With dynamically adaptive grids, our RLE meta information is updated implicitly without
requiring the transfer of rank- or primitive-enumeration-related information.

(c) Dynamic cluster generation (Section 3.4):
The partition generation and the required synchronization of the meta information is further
described in this Section.

(d) Migration of clusters (Section 3.5):
Our migration is based on sending the raw cluster data and pre- and post-processing of
RLE meta information only. Storing the grid structure information only with two markers
required for each leaf cell, we consider this to be a highly efficient data migration of partitions
wrt. the amount of transferred data.

With a cluster-based domain decomposition and its RLE connectivity information, it is
possible to efficiently keep more than one partition in a single program context with replicated
shared interfaces (see [25]) of the partitions. This yields beneficial features compared to other
developments based on a stack-based communication approach:

(a) Since operations on clusters can be executed individually, this allows application of cluster-
based optimizations such as skipping of already conforming clusters (see [24]) also in a
distributed-memory environment.

(b) Our RLE communication approach directly leads to a hybrid OpenMP and MPI paral-
lelization with a threaded parallelization over the clusters.

We present the application of cluster-based optimizations on distributed-memory systems
(see (a)) and furthermore discuss results for our hybrid parallelization method (see (b)) in
Section 4 followed by an outlook of the necessity of such a hybrid parallelization in Section 6.

3 Cluster-based domain decomposition and load balanc-
ing

3.1 Stack- and stream-based simulations

We start with an introduction to the stack- and stream-based communication properties based
on the bi-sectioning Sierpiński SFC, see [3]. The required basic triangle traversal types are

3



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

K H V
V'
H'

K'
V'

K'
H'

K' H' V'
V
H

K
V

K
H

ev
en

o
d
d

Figure 2: Grammar used in the spacetree for generation of the underlying simulation mesh.
The thick gray arrow shows the derivative of the grammar rule to refine a cell in the refinement
tree. Triangles without and with a prime are respectively of type even and odd.

given by G := {K,V,H} accounting for different possibly edges pierced by the SFC for entering
and leaving each triangle, see Fig. 2. We further annotate each triangle with O := {even, odd}
with the marker odd mirroring the traversal direction along the edge inserted with the newest
vertex bisection.

The tuple T := (G,O) then defines all SFC cell traversal possibilities required for our
communication scheme. A bisection of a triangular cell is then accomplished by deriving T for
both children based on T of the bisected cell, see Fig. 2 for these rules.

For data exchange, we first distinguish edges to be either on the left or right side of the
SFC (see [2, 23]). Here, the SFC representation in a cell is assumed to be closely drawn to
the hypotenuse. The edges of the leaf cells are further annotated with communication types
C := {new, old, bc} respectively for pushing data to the communication stack, fetching data from
the communication stack and handling boundary conditions. These edge types are inherited to
the child nodes during a bisection. Then data exchange can then be accomplished via the left
and right communication stacks, with push/fetch operations on the respective communication
stack, see [2, 3, 23].

3.2 Run-length encoded meta information and clustering

An SFC-based grid generation inherently leads to an ordering of all cells in each partition with
cell Ci+1 sharing exactly one edge with Ci. For each partition, we can set the edge types of the
interfaces shared with other partitions to new for writing data to the communication stacks
which are then exchanged with the adjacent partitions, or to old to process data by reading
exchanged data from the communication stacks via fetch operations. Here, we use the same
stack for the inter- and intra-partition communication. Instead of storing the meta information
for each edge shared among partitions [17, 27], we use a property induced by the required
ordering of the communicated elements which are written to the communication stacks:

We formally annotate each communicated data with the index i of the cell Ci pushing
the data to the stack. At any time during and after the grid traversal, these indices on the
communication buffers are ordered. Two properties can then be inferred by using a stack-
based communication approach. Without loss of generality, we only consider edge types of the
interfaces shared with other partitions set to new, hence generating data to be forwarded to
adjacent partitions.

(a) After the traversal, data associated to shared interfaces between adjacent partitions are

4



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

B

A, 3
leftright

a

b

c

a

right edge
comm. stack

b

left edge
comm. stack

d

e

c f

A

C

EFG

D

H
D, 2

F, 2

d e

f

g

g

RLE meta information Communication
data example

Figure 3: Exemplary RLE meta connectivity information for the partition highlighted with the
thick red border. We give a description for the edges on the left side of the SFC. The edge data
d and e is stored consecutively to the communication stack. Since this data has to be exchanged
with cluster F, we use the RLE entry (F, 2) to represent this communication interface. The
next communication data f and g is shared with cluster D and we represent it with (D, 2) in
our meta information encoding.

Clustering Edge communication graph

Figure 4: Left: partitions generated by spacetree split induced intervals of SFC. Right: sparse
communication graph for partitions with meta information for edges shared by multiple parti-
tions. Each red bordered area represents a partition and the lines the edge RLE communication
information.

stored en bloc to the communication stack.

(b) There is a unique single consecutive block of data for each adjacent partition.

Since all the communication data has to be ordered by the imaginary index due to stack-
communication properties, also all the data associated to interfaces shared with an adjacent
partition is stored consecutively to the communication buffer (property (a)). Property (b) is
induced by reductio ad absurdum and the cell-indexed ordering of the elements on the com-
munication stacks and the partitioning generated by SFC-intervals: two non-consecutive blocks
of data associated to shared interfaces to two partitions would result in a violation of this
cell-indexed ordering.

Based on this knowledge, we can then store the meta information for shared edges with a
run-length encoding in a list of tuples for the left and right communication stack. Each tuple
stores two values: (a) the information on the placement of the adjacent partition (pointer to

5



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

Figure 5: Different adaptivity states inserting or removing edges from triangle cells [23].

the adjacent partition if its stored in the same memory, the MPI rank to know the rank for
distributed-memory systems, etc.) and (b) the number of edges which are shared between
both partitions which are not represented by the edge RLE meta information. An example for
an edge communication and its corresponding RLE meta information is given in Fig. 3. This
results in a sparse-graph representation of the meta communication information with an example
given in Fig. 4. Since no meta information is required for intra-partition communication, the
communication in each partition is represented by a node. Each RLE meta entry then represents
an edge of the connectivity graph.

The information in each RLE then allows efficient data access on shared- and distributed-
memory systems: On shared-memory systems, the communication data on the adjacent parti-
tion can be directly accessed via a pointer stored in the meta information. Then, the concrete
location of the data on the adjacent communication stacks can be inferred by the corresponding
adjacently stored RLE meta information (property (b)). On distributed-memory systems, the
data has to be send and received with non-blocking commands to/from the rank specified in
the communication meta information. The data transfer on shared- and distributed-memory
can be done directly en bloc (property (a)).

We further keep all the data associated to a partition in a separately allocated memory area
and allow multiple partitions in a memory context. In combination with our RLE meta infor-
mation, this yields a software approach which is required for efficient cluster-based local-time
stepping [9]. Therefore, we further refer to our method as a cluster-based domain decomposition
approach.

With a forest of spacetrees [7], we can assemble different domains and also a grid for a cubed
sphere (see left image in Fig. 1). Here, a quadrilateral is assembled by two triangles and six
quadrilaterals are used for each cube face (see [4]). The meta information is then initialized for
data exchange connecting the cube edges, as shown in the left image in Fig. 1.

3.3 Updating meta information for dynamically adaptive grids

Due to dynamically changing grids, edges can be removed or inserted to the grid, see Fig. 5
for all possible adaptivity states. Also our meta information has to be updated to account
for these changes in grid structure. Our approach uses refinement and coarsening markers
which are communicated via the stack-communication system: a refinement marker MR is
communicated via the edge if a refinement operation created a vertex on this edge (3)-(7). For
coarsening operations joining two triangles, the coarsening markers MC are communicated via

6



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

the catheti of both coarsening triangles (2). By setting the edge types on the cluster boundary
interfaces to new, the adaptivity markers forwarded via edges are finally stored on the left
and right communication stacks. Hence, this stacks then contain the required information on
how to update the RLE meta information to a consistent state: A single refinement marker
MR requires incrementing the corresponding RLE entry to account for an additional edge to
be shared and two consecutive coarsening markers MC require to decrement the corresponding
RLE entry to account for removing an inter-cluster shared edge.

3.4 Dynamic cluster generation

With a dynamically changing grid, generated load imbalances have to be compensated by
reclustering. This requires updating meta information to a consistent state.

Regarding the split operations, we again profit from our stack-based communication which
allows inferring the new RLE meta communication information for the local cluster on-the-fly
during a traversal, see [23]: With the clusters generated by tree splits, we stop during the
traversal of the grid at particular points. Based on the number of elements stored on the
stacks, we can then infer the new meta information on-the-fly without requiring rank- or global
cell-enumeration-related information. Join operations can be accomplished by concatenation of
the RLE meta information of both clusters and by removing the meta information associated
to the interfaces formerly shared by the joined clusters.

However, these updates on the meta information only consider the clusters involved in the
split/join operation. Possible split and join operations on adjacent clusters require additional
synchronization. Here, we distinguish between adjacent clusters stored in the same memory
context and adjacent clusters on another rank for distributed-memory systems. If the adjacent
cluster is stored in the same memory context, we generate a consistent meta information by
accessing the adjacent clusters read-only to infer the required information: In case of a split,
the synchronization is accomplished based on the meta information stored at both recently
generated clusters. If the adjacent cluster was generated by joining other clusters, the meta
information is synchronized with the new cluster generated by the join operation. We again like
to emphasize, that all operations on the adjacent cluster are executed read-only. For clusters
stored on a different rank, the split or joined clusters send the synchronization information,
which was on shared-memory systems inferred by the read-only access, to the adjacent cluster.
The meta information on the cluster on the other rank can then be updated to a conforming
state based on the received information. For deciding whether a cluster has to be split or joined,
we use a massive splitting approach based on thresholds [23] (see [24] for an alternative, range-
based cluster generation). As soon as the number of cells in a cluster exceed the threshold Ts,
the cluster is split. If two sibling clusters both undershoot a threshold Tj , both clusters are
joined. In this work, we use a join threshold Tj := Ts

2 . Such a cluster generation leads to an
efficient parallelization with cluster-based optimizations on shared-memory systems [24].

3.5 Migration of clusters

We present the algorithmic pattern for a cluster-based data migration:

1. Destination annotation:
Each cluster is annotated with the rank to which it has to be migrated to.

2. Prospectively updating the communication meta information:
For each cluster, the destination rank is send to the adjacent clusters if the adjacent

7



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

cluster is stored on a different rank. The corresponding meta information in the adjacent
clusters is then updated to the new rank.

3. Cluster migration:
All cluster-associated data (stacks, meta information, user-specific data) can then be
migrated directly to the new MPI rank. We like to emphasize, that the amount of this
data is quasi optimal due to our SFC-induced partitioning and memory-efficient storage
of the pure simulation data on a compact stream in each cluster (see [23] for further
information).

4. Synchronization of the cluster-local RLE information:
For clusters received at a rank, the pointers in the RLE meta information on interfaces
shared by the received clusters and adjacent clusters on the same rank are synchronized.
For clusters send to another ranks, the adjacent clusters which are still on the same rank
update their RLE information with the rank to which the cluster was send to.

This pattern also allows utilization of generic load-balancing interfaces [11] and hence im-
plementation of alternative well-studied load-balancing schemes (e.g. [10, 15, 31] ) . The load-
balancing strategy which we use for our results is based on the parallel prefix sum over the
per-rank processed number of simulation cells. We use this information to send the clusters to
the next or previous MPI rank for improving the load balance, see [14] for further information.

Storing the grid structure requires only 2 flags per leaf cell with each flag stored in a single
byte (this can be also encoded in a bit stream), and we derive the additionally required meta
information on cell vertices, edge normals and communication flags derived on-the-fly during
the traversal. With the user-specified cell data (e.g. the simulation data) stored compactly on
a stream, the data migration of a cluster is quasi optimal regarding the amount of transferred
memory.

4 Results

The presented results are based on shallow-water simulations executed on dynamically changing
grids. We show a scalability test for our cluster-based data migration on distributed-memory
systems. We conducted a strong-scalability benchmark on the MAC cluster system1 on the
Intel compute nodes. The simulation domain is initialized with a refinement depth of 22 and
8 additional refinement levels. We split the cluster in case that they exceed a threshold size of
4096. The simulation is initialized with a radial dam break and is executed for 100 iterations.
In each iteration, we successively execute a time step of the simulation-adaptivity traversals (see
Sec. 3.3) and the threshold-based cluster generation (see Sec. 3.4), followed by a cluster-based
data migration (see Sec. 3.5). We tested different parallelization models with the results given
in Fig. 6 and further described next.

• Default:
The multi-threading support for this benchmark is disabled. The efficiency is 91.5% for
the execution on 256 cores and 88% on 384 cores with the baseline at 16 cores.

• Skipping of conforming clusters:
With the requirement of a conforming grid, adaptivity traversals are executed on all
clusters until a conforming grid state was generated, despite that some clusters already

1http://www.mac.tum.de/wiki/index.php/MAC_Cluster

8



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 64 128 192 256 320 384

M
ill

io
n 

C
el

ls
 p

er
 S

ec
on

d

Number of cores

Default, no threading Skipping conforming cluster
TBB, 1 thread TBB, 2 threads
TBB, skipping, 1 thread TBB, skipping, 2 threads
linear scaling (8 cores)

Figure 6: Strong scalability tests for different parallelization models and cluster-based opti-
mizations, see text for further information. The x-axis depicts the overall used cores in the
simulation and the y-axis the throughput in million triangle cells per second.

yield a conforming grid state. This method skips the conforming cluster traversals of this
grids (see [24] for details). Such an algorithm leads to a robust performance improvement
of 26.7% on 256 cores.

• TBB, 1 thread:
This version activates the hybrid parallelization with Intel’s Threading Building Blocks
(TBB) and compiles the code with thread-enabled MPI parallelization. However, we only
execute a single thread per MPI rank to measure the overheads involved by using tasking
to run operations in parallel on each cluster. These overheads are 4.2% on 256 cores
compared to our non-threaded default version.

Activation of a cluster-based optimization via skipping of clusters with an already con-
forming state (TBB, skipping, 1 thread) achieves a damping of the overheads introduced
by the conformity grid requirement and also leads to a performance improvement com-
pared to the non-threaded version.

• TBB, 2 threads:
Here, both threads execute the simulation-adaptivity traversals, but only a single one is
used for exchanging the data with other MPI ranks to synchronize the meta information.
On 384 cores, the serial processing of the MPI data exchange becomes more dominant,
resulting in a decrease in performance. We account for this with the strong scalability
benchmark: this leads to a longer time for the serial communication phase compared to the
compute phase for an increasing number of cores. Similar to the single-threaded version,
the activation of the cluster-based optimizations also compensates these overheads with
a similar performance compared to the non-threaded version for 256 cores.

With a hybrid parallelization, additional MPI data transfer is avoided for the shared in-
terfaces of the clusters. However, this did not lead to performance improvements due to the

9



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

introduction of additional overheads. We account for these overheads by additional tasks which
are enqueued to worker queues as well as the non-parallel processing of the MPI data exchange
and reduce operations on the shared interfaces.

With the skipping of conforming clusters, this again yielded a robust performance improve-
ment for the threaded version in a hybrid parallelization environment. The TBB, 2 threads
version with enabled cluster optimizations yielded a similar performance compared to the de-
fault, non-threaded version. Such a multi-threaded execution within one MPI rank allows
further optimizations which is also discussed in the Section 6 as part of our ongoing work.

5 Summary

We introduced a cluster-based parallelization approach on distributed-memory systems with an
underlying SFC-optimal sparse communication graph for a given partitioning. The benchmark
shows an efficiency of 91.5% on 256 cores and 88% on 384 cores for a shallow-water simulation
on a dynamically changing grids.

Our connectivity information is run-length encoded and is implicitly updated by transferred
adaptivity markers. With the stack-based communication system, the data which is to be trans-
ferred to adjacent clusters is stored consecutively in the memory and can be transferred directly
en bloc without preprocessing by using the RLE connectivity information. This leads to an
en bloc data transfer for shared- and distributed-memory parallelization models. Furthermore,
the clustering leads to a hybrid parallelization with a threaded parallelization over the clusters
(e.g. executing a task for each cluster).

Our presented cluster-based data migration is efficient for two major reasons: First, the
cluster-based data migration only requires migrating the raw cluster data without further pre-
and post-processing for intra-cluster connectivity. Since the simulation data is stored compactly
on a stream and with all vertex and normal information inferred during the spacetree traversal,
hence not requiring to be migrated, the amount of migrated data is quasi optimal. Second,
the connectivity information requires only pre- and post-processing of the RLE compressed
connectivity information.

Whereas multiple clusters are required for the data migration approach, we further pre-
sented one possible optimization by keeping multiple clusters in a single program context: our
clustering weakens the constraint of traversing the entire partition which is stored per MPI rank
for stack-based communication approaches. By clustering the partition, this allows a reorder-
ing or skipping of the execution of operations on the clusters [24]. In this work, we presented
the optimization of the traversal-skipping of already conforming clusters also in a distributed-
memory environment and used such an optimization to compensate overheads introduced by
the hybrid parallelization.

6 Outlook

We currently investigate simulation scenarios where a hybrid parallelization method is required:
considering e.g. the upper limit of 16GB on each MPI node on the SuperMUC with 16 physical
cores, runtime-persistent datasets have to be by far smaller than 2GB. However, e.g. the GebCo
bathymetry datasets2 are larger than 2GB with their highest resolution. With a hybrid paral-
lelization, we can store the bathymetry data e.g. for earth-scale Tsunami simulations (see Fig. 1)
only once per MPI rank. Also the elimination of the overheads of the non-parallel processing of

2http://www.gebco.net/data_and_products/gridded_bathymetry_data/

10



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

the MPI communication is further investigated by extending the RLE connectivity information
with unique cluster or thread ids for parallel parallel processing of the distributed-memory data
exchange with a hybrid parallelization.

We further envision cluster-based optimizations in combination with a hybrid-parallelization:
E.g. cluster-based local-time stepping, local-residual-aware iterative solvers and improved per-
formance for unpredictable workload via work-stealing on cluster level. Such a work stealing can
get beneficial for dynamically loading boundary values during the adaptivity phase and for flux
computations with variable computational intensity (see e.g. [13] used in Fig. 1). Furthermore,
the upcoming accelerator cards such as the XeonPhi require a hybrid parallelization. Hence,
an evaluation of a cluster-based hybrid parallelization on such architectures is also part of our
future work.

For sake of reproducibility, the software is freely available as open source at
http://www5.in.tum.de/sierpinski/ and is tagged with version 2014 03 12 iccs.

7 Acknowledgements

We like to thank the Munich Centre of Advanced Computing for for funding this project by
providing computing time on the MAC Cluster. This work was partly supported by the Ger-
man Research Foundation (DFG) as part of the Transregional Collaborative Research Centre
”Invasive Computing” (SFB/TR 89).

References

[1] M. Bader, C. Böck, J. Schwaiger, and C. A. Vigh. Dynamically Adaptive Simulations with Minimal
Memory Requirement - Solving the ShallowWater Equations Using Sierpinski Curves. SISC, 32(1),
2010.

[2] Michael Bader, Kaveh Rahnema, and Csaba Attila Vigh. Memory-efficient sierpinski-order traver-
sals on dynamically adaptive, recursively structured triangular grids. In Kristjan Jonasson, editor,
Applied Parallel and Scientific Computing - 10th International Conference, PARA 2010, volume
7134 of Lecture Notes in Computer Science, pages 302–311. Springer, March 2012.

[3] Michael Bader, Stefanie Schraufstetter, Csaba Vigh, and Jörn Behrens. Memory efficient adaptive
mesh generation and implementation of multigrid algorithms using sierpinski curves. International
Journal of Computational Science and Engineering, 4(1):12–21, 2008.

[4] Jörn Behrens. Adaptive atmospheric modeling: key techniques in grid generation, data structures,
and numerical operations with applications. Springer, 2006.

[5] Jörn Behrens and Jens Zimmermann. Parallelizing an unstructured grid generator with a space-
filling curve approach. In Euro-Par 2000 Parallel Processing, pages 815–823. Springer, 2000.

[6] S. Borkar and A. A. Chien. The future of microproc. Commun. ACM, 54, 2011.

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable Algorithms for Parallel Adaptive
Mesh Refinement on Forests of Octrees. SISC, (3), 2011.

[8] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Georg Stadler, Eh Tan, Tiankai Tu, Lucas C
Wilcox, and Shijie Zhong. Scalable adaptive mantle convection simulation on petascale super-
computers. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 62. IEEE
Press, 2008.

[9] CE Castro, M Käser, and EF Toro. Space–time adaptive numerical methods for geophysical
applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 367, 2009.

11



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

[10] George Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of
parallel and distributed computing, 7(2):279–301, 1989.

[11] Karen Devine, Bruce Hendrickson, Erik Boman, Matthew St John, and Courtenay Vaughan.
Design of dynamic load-balancing tools for parallel applications. In Proceedings of the 14th inter-
national conference on Supercomputing, pages 110–118. ACM, 2000.

[12] Anton Frank. Organisationsprinzipien zur Integration von geometrischer Modellierung, nu-
merischer Simulation und Visualisierung. Dissertation, München, 2000.

[13] David L George. Augmented riemann solvers for the shallow water equations over variable topog-
raphy with steady states and inundation. Journal of Computational Physics, 227(6):3089–3113,
2008.

[14] Daniel F Harlacher, Harald Klimach, Sabine Roller, Christian Siebert, and Felix Wolf. Dynamic
load balancing for unstructured meshes on space-filling curves. In Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
1661–1669. IEEE, 2012.

[15] G Horton. A multi-level diffusion method for dynamic load balancing. Parallel Computing,
19(2):209–218, 1993.

[16] W. B. March et al. Optimizing the comp. of n-point correlations on large-scale astronomical data.
In Proc. of the Int. Conf. on High Perf. Comp., Netw., Stor. and Analysis, SC ’12. IEEE Computer
Society Press, 2012.

[17] Oliver Meister, Kaveh Rahnema, and Michael Bader. A software concept for cache-efficient simu-
lation on dynamically adaptive structured triangular grids. In Applications, Tools and Techniques
on the Road to Exascale Computing, volume 22 of Advances in Parallel Computing, pages 251–260,
Gent, May 2012. ParCo 2012.

[18] William F Mitchell. A refinement-tree based partitioning method for dynamic load balancing with
adaptively refined grids. Journal of Parallel and Distributed Computing, 67(4):417–429, 2007.

[19] Bongki Moon, Hosagrahar V Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis of the
clustering properties of the hilbert space-filling curve. Knowledge and Data Engineering, IEEE
Transactions on, 13(1):124–141, 2001.

[20] Ralf-Peter Mundani. Hierarchische Geometriemodelle zur Einbettung verteilter Simulationsauf-
gaben. Dissertation, Aachen, 2006.

[21] Tobias Neckel. The PDE Framework Peano: An Environment for Efficient Flow Simulations.
Dissertation, Institut für Informatik, Technische Universität München, June 2009.

[22] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon,
R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros. Petascale direct numer-
ical simulation of blood flow on 200k cores and heterog. arch. In Proc. of the 2010 ACM/IEEE Int.
Conf. for HPC, Networking, Storage and Analysis, SC ’10, pages 1–11. IEEE Computer Society,
2010.

[23] Martin Schreiber, Hans-Joachim Bungartz, and Michael Bader. Shared-memory parallelization of
fully-adaptive simulations using a dynamic tree-split and -join approach. Puna, India, December
2012. IEEE International Conference on High Performance Computing (HiPC), IEEE Xplore.

[24] Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz. Cluster optimization and par-
allelization of simulations with dynamically adaptive grids. In Euro-Par 2013 Parallel Processing.
Springer, 2013.

[25] Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz. SFC-based Communication
Metadata Encoding for Adaptive Mesh. In ParCo 2013, October 2013. in review.

[26] Horst D Simon. Partitioning of unstructured problems for parallel processing. Computing Systems
in Engineering, 2(2):135–148, 1991.

[27] Csaba A. Vigh. Parallel Simulation of the Shallow Water Equations on Structured Dynamically
Adaptive Triangular Grids. PhD thesis, Institut für Informatik, Technische Universität München,
2012.

12



Cluster-based communication and load balancing for sim. on dyn. adapt. grids M. Schreiber et al.

[28] T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids.
Verlag Dr. Hut, 2009.

[29] T. Weinzierl and M. Mehl. Peano – A Traversal and Storage Scheme for Octree-Like Adaptive
Cartesian Multiscale Grids. SIAM Journal on Scientific Comp., 33(5):2732–2760, October 2011.

[30] Tobias Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cart. Grids.
Dissertation, Institut für Informatik, Technische Universität München, München, 2009.

[31] Gengbin Zheng and Laxmikant V Kale. Achieving high performance on extremely large parallel
machines: performance prediction and load balancing. Citeseer, 2005.

[32] Gerhard Zumbusch. On the quality of space-filling curve induced partitions. Sonderforschungs-
bereich 256, 2000.

13


