Algorithms in Scientific Computing II
Structured Grids and Space-Filling Curves

Michael Bader

TUM – SCCS

Winter 2011/2012
Part I

From Quadtrees to Space-Filling Curves
Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares
Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares
- adaptive refinement possible
- terminate, if squares entirely within or outside domain
Storing a Quadtree – Sequentialisation

- sequentialise cell information according to *depth-first traversal*
- relative numbering of the child nodes determines sequential order
Storing a Quadtree – Sequentialisation

- sequentialise cell information according to *depth-first traversal*
- relative numbering of the child nodes determines sequential order
- here: leads to so-called **Morton order**
Morton Order

Relation to bit arithmetics:

- odd digits: position in vertical direction
- even digits: position in horizontal direction
Morton Order and Cantor’s Mapping

Georg Cantor (1877):

\[0.0111001 \ldots \rightarrow \begin{pmatrix} 0.0110 \ldots \\ 0.1101 \ldots \end{pmatrix} \]

- **bijective** mapping \([0, 1] \rightarrow [0, 1]^2\)
- proved identical cardinality of \([0, 1]\) and \([0, 1]^2\)
- provoked the question: is there a **continuous** mapping? (i.e. a curve)
Preserving Neighbourship for a 2D Octree

Requirements:

- consider a simple 4×4-grid
- uniformly refined
- subsequently numbered cells should be neighbours in 2D

Leads to (more or less unique) numbering of children:
Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D
Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D
- here: similar to the concept of Hilbert curves
Open Questions

Algorithmics:

- How do we describe the sequential order algorithmically?
- What kind of operations are possible?
- Are there further “orderings” with the same or similar properties?

Applications:

- Can we quantify the “neighbour” property?
- In what applications can this property be useful?
- What further operations
Part II

Space-Filling Curves
Definition of a Space-filling Curve

Given a continuous, surjective mapping \(f : \mathcal{I} \rightarrow Q \subset \mathbb{R}^n \), then \(f_*(\mathcal{I}) \) is called a *space-filling curve*, if \(|Q| > 0 \).

Comments:

- a *curve* is defined as the image \(f_*(\mathcal{I}) \) of a continuous mapping \(f : \mathcal{I} \rightarrow \mathbb{R}^n \)
- *surjective*: every element in \(Q \) occurs as a value of \(f \), i.e., \(Q = f_*(\mathcal{I}) \)
- \(\mathcal{I} \subset \mathbb{R} \) and \(\mathcal{I} \) is compact, typically \(\mathcal{I} = [0, 1] \)
- if \(Q \) is a smooth manifold, then there can be no *bijective* space-filling mapping \(f : \mathcal{I} \rightarrow Q \subset \mathbb{R}^n \)
 (theorem: E. Netto, 1879).
Example: Construction of the Hilbert curve

Iterations of the Hilbert curve:

- start with an iterative numbering of 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations
Example: Construction of the Hilbert curve

Recursive construction of the *iterations*:

- split the quadratic domain into 4 congruent subsquares
- find a space-filling curve for each subdomain
- join the four subcurves in a suitable way
A Grammar for Describing the Hilbert Curve

Construction of the iterations of the Hilbert curve:

\[\begin{align*}
\text{H} & \rightarrow H \quad H \\
A & \quad B \\
\text{A} & \rightarrow \quad A \\
B & \rightarrow B \quad C \\
B & \quad H \\
C & \rightarrow C \\
C & \quad C
\end{align*} \]

→ motivates a Grammar to generate the iterations
A Grammar for Describing the Hilbert Curve

- Non-terminal symbols: \{H, A, B, C\}, start symbol \(H\)
- Terminal characters: \{↑, ↓, ←, →\}
- Productions:

\[
\begin{align*}
H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
A & \leftarrow H \rightarrow A \uparrow A \leftarrow C \\
B & \leftarrow C \leftarrow B \downarrow B \rightarrow H \\
C & \leftarrow B \downarrow C \leftarrow C \uparrow A
\end{align*}
\]

- Replacement rule: in any word, all non-terminals have to be replaced at the same time → L-System (Lindenmayer)

⇒ the arrows describe the iterations of the Hilbert curve in “turtle graphics”
Definition of the Hilbert Curve’s Mapping

Definition: (Hilbert curve)
- each parameter \(t \in \mathcal{I} := [0, 1] \) is contained in a sequence of intervals
 \[
 \mathcal{I} \supset [a_1, b_1] \supset \ldots \supset [a_n, b_n] \supset \ldots ,
 \]
 where each interval result from a division-by-four of the previous interval.
- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares)
- the 2D sequence of intervals converges to a unique point \(q \) in \(q \in \mathcal{Q} := [0, 1] \times [0, 1] \) – \(q \) is defined as \(h(t) \).

Theorem
\(h : \mathcal{I} \rightarrow \mathcal{Q} \) defines a space-filling curve, the Hilbert curve.
Claim: h defines a Space-filling Curve

We need to prove:

- h is a mapping, i.e. each $t \in I$ has a unique function value $h(t) \rightarrow OK$, if $h(t)$ is independent of the choice of the sequence of intervals (proof skipped)

- $h: I \rightarrow Q$ is surjective:
 - for each point $q \in Q$, we can construct an appropriate sequence of 2D-intervals
 - the 2D sequence corresponds in a unique way to a sequence of intervals in I – this sequence defines an original value of q
 \Rightarrow every $q \in Q$ occurs as an image point.

- h is continuous \rightarrow see proof of Hölder continuity
3D Hilbert Curves – Iterations

1st iteration

2nd iteration
Part III

Parallelisation Using Space-Filling Curves
Generic Space-filling Heuristic

Bartholdi & Platzman (1988):

1. Transform the problem in the unit square, via a space-filling curve, to a problem on the unit interval
2. Solve the (easier) problem on the unit interval

For parallelisation: strategy to determine partitions

1. use a space-filling curve to generate a sequential order on the grid cells
2. do a 1D partitioning on the list of cells (cut into equal-sized pieces, or similar)
Example: Hilbert-Curve Partitions on a Cartesian Grid

- Hilbert curve splits vertices into right/left (red/green) set
- Hilbert order traversal provides boundary vertices in sequential order
Example: Hilbert-Curve Partitions on Quadtrees

- here: with ghost cells
 (processed in identical order in both partitions)
Recall: Grammar to Describe the Hilbert Curve

Construction of the iterations of the Hilbert curve:

Can this grammar be used to generate adaptive Hilbert orders?
A Grammar for Hilbert Orders on Quadtrees

- Non-terminal symbols: \{H, A, B, C\}, start symbol H
- Terminal characters: \{↑, ↓, ←, →, (,)\}
- Productions:

 \[
 \begin{align*}
 H & \leftarrow (A ↑ H \rightarrow H ↓ B) \\
 A & \leftarrow (H \rightarrow A ↑ A \leftarrow C) \\
 B & \leftarrow (C \leftarrow B ↓ B \rightarrow H) \\
 C & \leftarrow (B ↓ C \leftarrow C ↑ A)
 \end{align*}
 \]

⇒ arrows describe the iterations of the Hilbert curve in “turtle graphics”
⇒ terminals (and) mark change of levels: “up” and “down”
Hölder Continuity

A function \(f : \mathcal{I} \to \mathbb{R}^n \) is (uniformly) \textit{continuous}, if for each \(\epsilon > 0 \) there is a \(\delta > 0 \), such that:
for all \(t_1, t_2 \in \mathcal{I} \) with \(|t_1 - t_2| < \delta \),
the image points have a distance of \(\| f(t_1) - f(t_2) \|_2 < \epsilon \)

Hölder Continuity:

\(f \) is called \textit{Hölder continuous with exponent} \(r \) on \(\mathcal{I} \),
if a constant \(C > 0 \) exists, such that for all \(t_1, t_2 \in \mathcal{I} \):

\[
\| f(t_1) - f(t_2) \|_2 \leq C \ |t_1 - t_2|^r
\]

- case \(r = 1 \) is equivalent to Lipschitz continuity
- Hölder continuity implies uniform continuity
Hölder Continuity and Parallelisation

\[\|f(t_1) - f(t_2)\|_2 \leq C |t_1 - t_2|' \]

Interpretation:

- \(\|f(t_1) - f(t_2)\|_2 \) is the distance of the image points
- \(|t_1 - t_2| \) is the distance of the indices
- also: \(|t_1 - t_2| \) is the area of the respective space-filling-curve partition
- hence: relation between volume (number of grid cells/points) and extent (e.g. radius) of a partition

⇒ Hölder continuity gives a quantitative estimate for compactness of partitions
Hölder Continuity of the Hilbert Curve

Proof:

- given \(t_1, t_2 \in I \); choose \(n \), such that
 \[
 4^{-(n+1)} < |t_1 - t_2| < 4^{-n}
 \]
- \(4^{-n} \) is interval length for the \(n \)-th iteration
 \[
 \Rightarrow \ [t_1, t_2] \text{ overlaps at most two neighbouring(!) intervals.}
 \]
- due to construction of the Hilbert curve, \(h(t_1) \) and \(h(t_2) \)
 are in neighbouring subsquares with face length \(2^{-n} \).
- these two subsquares build a rectangle with a diagonal of
 length \(2^{-n} \cdot \sqrt{5} \); therefore:
 \[
 \| h(t_1) - h(t_2) \|_2 \leq 2^{-n} \sqrt{5}
 \]
- as \(4^{-(n+1)} < |t_1 - t_2| \), we have
 \[
 2 \cdot 2^{-n} < \sqrt{|t_1 - t_2|}
 \]
 \[
 \Rightarrow \text{result:} \quad \| h(t_1) - h(t_2) \|_2 \leq \frac{1}{2} \sqrt{5} |t_1 - t_2|^{1/2}
 \]