Exercise 1: Hierarchization in Higher Dimensions

In this exercise we will implement the multi-recursive algorithm for hierarchization of a multi-dimensional regular sparse grid. The \texttt{SparseGrid} class in the Python source file \texttt{sparsegrid.py} provides a code skeleton in which some parts are missing.

(i) Fill the gaps in \texttt{_init_}, \texttt{_hierarchizeMainAxisRecursively} and \texttt{_hierarchizeRecursively}. For the specifications look at the functions' document strings and follow the instructions in the comments.

\textbf{Hint:} The basic algorithm is very similar to \texttt{_insertGridPointsRecursively}.

(ii) Fill in the function body of \texttt{computeVolume}.

Exercise 2: The Combination Technique – A Different View on Sparse Grids

Dealing with hierarchical bases often turns out to be sophisticated. On this worksheet we will therefore see how the so-called \textit{combination technique} finds a sparse grid interpolant, that approximates a function on a number of full grids, each consisting only of a “relatively small” number of grid points.

Let \(u_{\bar{l}} (\bar{l} \in \mathbb{N}^2) \) for an \(u : [0, 1]^2 \rightarrow \mathbb{R} \) the interpolant in \(V_{\bar{l}} \) (interpolating piecewise bilinearly at the inner grid points, at the boundary \(u \) is assumed to be zero again).

(i) \(V_{\bar{l}} \) can be decomposed into a set of subspaces \(W_{\bar{l}} \). Accordingly, the interpolant \(u_{\bar{l}} \in V_{\bar{l}} \) can be written as a sum of \(w_{\bar{l}} \in W_{\bar{l}} \).

Spot the grid associated with \(u_{(3,2)} \) in the right part of Figure 1. Identify those subspaces in the left part that are needed to reconstruct \(u_{(3,2)} \).

We need to “collect” those \(w_{\bar{l}} \) with indices bound component-wise by \(\bar{l} \). In subspace scheme (see left hand side of Figure 1) these are the subspaces in the rectangular left upper part relative to \(\bar{l} \).
Written as a sum this gives us:

$$u_l = \sum_{l' \leq l} w_{l'}$$

Note that weights are not needed yet.

(ii) Use the result from (i) to rewrite

$$\sum_{\|l\|_1 = n+1} u_l, \quad n \in \mathbb{N}$$

for the two-dimensional case as a weighted sum of w_l.

Hint: Look at the subspace scheme in Figure 1 and count the occurrences of each subspace in the sum. What do you notice when comparing w_l with common level $n = \|l\|_1 + \text{dim} - 1$?

Using the previous result we start with

$$\sum_{\|l\|_1 = n+1} u_l = \sum_{\|l\|_1 = n+1} \sum_{l' \leq l} w_{l'}.$$

For the reorganization part we first count which $w_{l'}$ appears how many times in the sums. (remember, this is 2d!)

- $\|l'\|_1 = n + 1$: each $w_{l'}$ has one occurrence
- $\|l'\|_1 = n$: each $w_{l'}$ has two occurrences
- \vdots
- $\|l'\|_1 = k$: each has $n + 2 - k$ occurrences
Technical explanation: Let l be of level $n + 1$, i.e. $|l|_1 = n + 1$. From l construct all possible l' of level n with $|l'|_1 \leq |l|_1$. Those are exactly two, as there are two components ($2d!$) that can be decreased by 1. Applying this scheme down to level 1 then leads to the result above.

Written as an explicit sum formula this is:

$$
\sum_{|l|_1 = n+1} u_l = \sum_{|l|_1 \leq n+1} (n + 2 - |l|_1)w_l.
$$

(iii) In the final step use the previous results to give a representation of the sparse grid interpolant

$$
u_n^D := \sum_{|l|_1 \leq n+1} w_l
$$
as a weighted sum of u_l. Again, count the occurrences of the w_l.

By looking at the subspace scheme rather than by looking at the formulas it becomes clear that the following holds:

$$
\sum_{|l|_1 \leq n+1} w_l = \sum_{|l|_1 = n+1} u_l - \sum_{|l|_1 = n} u_l
$$

(iv) Assume you are talking to a person who knows how to approximate the volume $F_2(u)$ through the trapezoidal rule (in 2d) with respect to u_l. Give instructions on how to write a program that implements a sparse grid approximation of $F_2(u)$. Remember Archimedes quadrature.

- First idea: Replace volume $F_2(u)$ by the sparse grid volume approximation $F_2(u_n^D)$.
- Second idea: Think of the interpolant as a sum of u_l. We know those u_l (interpolating u on regular grids) as well as their volumes (trapezoidal rule in 2d).
- Together with the weights from the previous part we get

$$
F_2(u) \approx F_2(u_n^D) = \sum_{|l|_1 = n+1} F_2(u_l) - \sum_{|l|_1 = n} F_2(u_l)
$$

(v) Compare this method with Archimedes quadrature — what are the (dis-)advantages?

Advantages:

- Simpler program code (Haven’t you tried coding them? Do it! You’ll agree...)
- It might be possible to reuse an existing program for the trapezoidal rule on common regular grids (advantage is even bigger for more complex applications, e.g. when computing a sparse grid solution for a fluid simulation)
- For comprehensive computations the program is more likely and easy to be parallelized as the single grids are processed independently from each other

Disadvantages:

- No straightforward approach to include adaptivity, i.e. it’s not possible to automatically find the right evaluation points
- Recursion is much more beautiful!