Algorithms of Scientific Computing
Hierarchical Methods and Sparse Grids

Michael Bader
Technische Universität München
Summer Term 2012
Part VII

Algorithms and Data Structures for Sparse Grids
Algorithms and Data Structures

- We will now look at typical sparse grid algorithms
- Can, e.g., be used for hierarchization/dehierarchization, integration, data mining, solution of PDE, …
- Important: *adaptive* representation
- Algorithms depend on data structure:
 - Efficient traversal of sparse grid necessary
 - Thus, we deal with data structures for sparse grids, too
Data Structures ($d = 1$)

- How to store function $u : [0, 1] \rightarrow \mathbb{R}$ in hierarchical representation (i.e. surplusses $v_{i,j}$)?
- Order and store grid points and associated values in binary tree
 - Root is node $x_{1,1} = 1/2$
 - Children of node $x_{l,i}$ are – if existent – the grid points $x_{l+1,2i-1}$ and $x_{l+1,2i+1}$ of level $l+1$
 - Alternative point of view if child does not exist: Complete subtree of binary tree starting from child with all surplusses set to 0
Data Structures \((d = 1) (2)\)
Typical Algorithms ($d = 1$)

Hierarchization and Dehierarchization

- Prototype for typical algorithm (c.f. worksheet 4)
- Our data structure has to allow
 1. Iteration over all grid points, considering the hierarchical relations
 - E.g. for hierarchization: first handle all grid points in the support of $\phi_{l,i}$, then compute $v_{l,i}$
 2. Access to *hierarchical neighbors*: grid points at interval boundaries of support of $\phi_{l,i}$ (if possible – exception for points 0 and 1 as not in the tree), e.g. to compute

$$v_{l,i} = u_{l,i} - \frac{1}{2}(u_l + u_r).$$
Typical Algorithms \((d = 1)\) (2)

- Hierarchical neighbors are easy to find geometrically
 \[x_{l,i-1}, \quad x_{l,i+1} \]
- But have even indices \(\Rightarrow\) really are on another level \((< l)\)
- In the binary tree structure:
 - Can be found on way from root to node
 - One is parent node
- For hierarchization/dehierarchization: pass hierarchical neighbors as additional parameters

Developing algorithms:
- Try to store all information to process one node at the node and its hierarchical neighbors
- Access to other nodes typically expensive
- Tree traversal with “supply of hierarchical neighbors” only linear in number of nodes
Data Structures and Typical Algorithms ($d > 1$)

- What data structure to use in more than one dimension?

 Algorithmically: use construction of basis functions as product of one-dimensional hats. Ideally:
 - Use a loop $1, \ldots, d$ over the dimension
 - Apply $1d$ algorithm on one-dimensional structures in each dimension (see also worksheet 7)

\Rightarrow Need access to hierarchical neighbors in each spacial direction; implies to create binary tree structure in each dimension

- Disadvantages:
 - Storage requirements ($2d$ pointers)
 - High effort to keep structure consistent when inserting or deleting points
If you could recognize anything, it would be binary tree structures for rows (black) and columns (magenta)
Often better:

- Store in a node only two pointers for one direction (e.g. x_1)
- A binary tree of nodes is a row (a 1d structure parallel to the x_1 axis)
- For next spatial direction x_2, only a binary tree in x_2 direction required
- Stores one plane parallel to $x_1 - x_2$ coordinate plane; nodes are the binary trees with 1d structures
- For each additional spatial direction x_d build binary tree with $(d - 1)$-dimensional structures as nodes
- Disadvantage: Access to hierarchical neighbors not that easy any more (except for x_1-direction)
- But can be achieved without much more computational effort by suitable reordering of loops and tree traversals
Already more clear: One plane (two-dimensional structure) consists of one binary tree (magenta) of which the nodes are binary trees (black) for each row.
Hash table

- Much more comfortable (and not too inefficient) alternative
- Store magnitudes as target values, with, e.g., (\vec{l}, \vec{i}) as keys
- No need to care about tree structures
- Only have to compute indices of designated node (hierarchical neighbor, . . .)

⇒ Best solution for your own sparse grid experiments

Further assumptions on data structures

- Algorithms will assume that all hierarchical neighbors exist for each grid point

⇒ If creating grid points adaptively, create them if necessary
- No further assumptions
Summary

Data Structures
- array-based for regular sparse grids and combination technique (see tutorials)
- hierarchical adaptivity reflected by tree-based data structures (but: more complicated in higher dimensions)
- hash-based data structures

Algorithms
- hierarchisation and dehierarchisation: tree-based recursion plus "hierarchical neighbours"
- archimedes quadrature → recursion on dimensions
- much more complicated algorithms, if we want to use sparse grids for solution of partial differential equations