Algorithms of Scientific Computing

General Remarks

Michael Bader, Dirk Pflüger
Summer Term 2012
Classification of the Lecture

Students of Informatics:
- Diplom: Wahlpflichtfach theoretische Informatik
- Master Informatik: Wahlfach im Fachgebiet „Algorithmen und Wissenschaftliches Rechnen“
- Bachelor Informatik/Wirtschaftsinformatik: Wahlfach
- Students of Computational Science and Engineering (CSE): application area (cat. E1)

Students of Physics: „nichtphysikalisches Wahlfach“
(Anmeldung erforderlich, 4 SWS)

Students of Mech. Engin.: Modul Numerische Simulation

Students of Mathematics and all others:
Wahlfach, Nebenfach Informatik (mit Prüfungsschriftführer abklären)

Warm Welcome!
Tutorials

Tutors:
- Kaveh Rahnema (FFT, space-filling curves)
- Gerrit Buse (hierarchical basis, sparse grids)

Time & Day:
- typically, tutorials will be on Wednesdays (10-12)
- exception on Wed, Apr 18: lecture
- first tutorial: Wed, Apr 25
- exception on Mon, Apr 30: tutorial

“Style”:
- worksheets with applications & examples
- no compulsory part
Algorithms of Scientific Computing
Scientific Computing

also: *Computational Science and Engineering, Wissenschaftliches Rechnen, ...*

Attempt of a definition:

Scientific Computing is . . .

- (numerical) simulation of problems from science or engineering using High Performance Computing (Bungartz, TUM)
- the interdisciplinary conjunction of mathematical and computer science methods as well as different applications of the natural sciences and engineering disciplines, e.g. (TU Darmstadt)
- the subfield of computer science concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems (Wikipedia, 2012)
- an *interdisciplinary discipline*
- the focus at our chair SCCS
Algorithms in Scientific Computing?

Central Question: What do I get from this lecture?
• . . . in particular in the field of Scientific Computing?
• . . . in general in the field of Informatics?
⇒ What could/should/do I want to learn in Informatics?

• problem
• technique, method
• analytical question
. . . of Informatics play a (major) role?
Cross-Topical Aspects
Representation of Information

Claim:

Informatics is the science (or art) of storing information such that it can be used (processed) efficiently.

Examples for information and storage technique:

- tables (data bases of all kind)
- trees, graphs (path searching, . . .)
- multi-dimensional fields (raster data, etc.)

Our topic:

How do we store continuous data (mathematical functions)?
For Comparison: Representation of Scalars

A brief history of the representation of numbers:

- “tally marks”: |, ||, |||, ||||
 (still successfully used to count drinks in bars & restaurants)
- number symbols such as I, V, X, MMIV:
 compact but tedious for computing
- positional notation (decimal numbers, binary system, etc.):
 ease of arithmetics up to machine computing

Crucial ideas:

- Hierarchy (different „place value“ of digits)
- Structure (concept of 0 as a placeholder!)
Representation of Mathematical Functions

Possibilities of representation (historical):

- *analytical functions*: \(f(x) = e^x \sin(x) \)
- *tabulated values*
 (z.B. logarithm tables, newly rastered data/sampling)
- *interpolation* (also piecewise):
 (polygonal chain/curve, polynomial interpolation,
 spline interpolation, trigonometrical interpolation, . . .)

Goal: *access and use information efficiently!*

- more compact storage
- identification of certain properties (information)
- generally: more efficient algorithms for processing/computations
Multi-Dimensional Data

Examples for multi-dimensional data structures:

- Matrices
- Image data (images, tomography, movies, ...)
- Discretization based on grids (discretization of physical models / partial differential equations)
- Coordinates of any kind (often going along with graphs)
- Tables (relational databases)
- In financial mathematics: baskets of stocks/options/...
Multi-Dimensional Data

Core topic: linearization/sequentialization

- Storage of data structure in memory
- Data processing (traversal)

Demands on linearization ("efficiency"):
- Maintain neighborhood \Rightarrow locality of data, "clustering"
- Simple, fast computation of indices
- "Continuity", regularity
- Symmetry w.r.t. single dimensions
Recursive Algorithms and Hierarchical Data Structures

“Traditional” style of algorithms in scientific computing:
- FORTRAN-programs; procedural/iterative programming
- strongly based on loops and arrays

Nowadays:
- Recursive and hierarchical: w.r.t. algorithms (partitioning of problem) and data structures (trees, object orientation)
- Adaptive: invest effort, where most benefit can be achieved
- Distributed: Computing on parallel and distributed systems
- Hardware-oriented: → High Performance Computing

⇒ generally applicable concepts and ideas
Schedule

Fast Fourier Transform:
- discrete Fourier transform as 2D, 3D interpolation
- FFT as divide-and-conquer algorithm
- transform for data compression (images, audio and video data)

Hierarchical basis and sparse grids
- adaptive integration and Archimedes’ quadrature
- hierarchical basis functions
- the curse of dimensionality
- outlook on wavelets

Space-filling curves and space trees
- definition and construction of space-filling curves
- parallelisation and partitioning
- sequential data structures and traversal of octrees