Algorithms of Scientific Computing

Space-Filling Curves and their Applications in Scientific Computing

Michael Bader
Summer Term 2012
Sequentialising Multi-dimensional Data

Examples of multi-dimensional data structures:

- Matrices
- Image data (images, tomographic data, movies, ...)
- discretisation meshes (to discretise mathematical models in physics/...; PDE, etc.)
- Coordinates (often used in connection with graphs)
- tables (also in data bases)
- in computational finance and financial mathematics: “baskets” of stocks/options/...
Sequentialising Multi-dimensional Data (2)

Typical algorithms and operations:

- traversal (update-processing of all data; simulation meshes, e.g.)
- matrix operations (linear algebra, etc.)
- sequentialisation (e.g. to store data on discs or in main memory)
- partitioning of data (for parallelisation or in divide-and-conquer algorithms)
- sorting of data (to simplify further operations)
- in general: nested loops

```
for i from 1 to n do
    for j from 1 to m do ...
```
Demands on Efficient Sequentialisation

Effective Sequentialisation:
- unique numbering \Rightarrow requires bijective mapping
- sequentialisation without “holes” (for data structures, e.g.)

Efficient Sequentialisation:
- preserve neighbourship properties \Rightarrow data locality
- fast, simple index computation
- “smoothness”, stability vs. small changes
- dimensional symmetry (no fast or slow dimensions)
- “clustering” of data
Application Examples

- **range queries** in image and raster data bases
- **image browsing** and **image search** in image collections
- heuristical approaches for graph-based algorithms (nearest neighbour, traveling salesman)
- collision detection
- **parallelisation** of data
- efficient use of **cache memory** (in simulations, e.g.)
Questions:
- Can this mapping lead to a contiguous “curve”?
- i.e.: Can we find a continuous mapping?
- and: Can this continuous mapping fill the entire square?
What is a Curve?

Definition (Curve)

As a curve, we define the image \(f_*(I) \) of a continuous mapping \(f : I \to \mathbb{R}^n \).

\[x = f(t), \quad t \in \mathcal{I}, \]

is called parameter representation of the curve.

With:

- \(\mathcal{I} \subset \mathbb{R} \) and \(\mathcal{I} \) is compact, usually \(\mathcal{I} = [0, 1] \).
- the image \(f_*(\mathcal{I}) \) of the mapping \(f_* \) is defined as \(f_*(\mathcal{I}) := \{ f(t) \in \mathbb{R}^n \mid t \in \mathcal{I} \} \).
- \(\mathbb{R}^n \) may be replaced by any Euclidean vector space (norm & scalar product required).
What is a Space-filling Curve?

Definition (Space-filling Curve)

Given a mapping \(f : \mathcal{I} \to \mathbb{R}^n \), then the corresponding curve \(f_*(\mathcal{I}) \) is called a space-filling curve, if the Jordan content (area, volume, \ldots) of \(f_*(\mathcal{I}) \) is larger than 0.

Comments:

- assume \(f : \mathcal{I} \to Q \subset \mathbb{R}^n \) to be surjective (i.e., every element in \(Q \) occurs as a value of \(f \));
 then, \(f_*(\mathcal{I}) \) is a space-filling curve, if the area (volume) of \(Q \) is positive.
- if the domain \(Q \) has a smooth boundary, then there can be no bijective mapping \(f : \mathcal{I} \to Q \subset \mathbb{R}^n \), such that \(f_*(\mathcal{I}) \) is a space-filling curve (theorem: E. Netto, 1879).
History of Space-Filling Curves

1877: Georg Cantor finds a bijective mapping from the unit interval \([0, 1]\) into the unit square \([0, 1]^2\).

1879: Eugen Netto proves that a **bijective** mapping \(f: \mathcal{I} \to Q \subset \mathbb{R}^n\) cannot be continuous (i.e., a curve) at the same time (as long as \(Q\) has a smooth boundary).

1886: rigorous definition of **curves** introduced by Camille Jordan

1890: Giuseppe Peano constructs the first space-filling curves.

1890: Hilbert gives a geometric construction of Peano’s curve; and introduces a new example – the Hilbert curve

1904: Lebesgue curve

1912: Sierpinski curve
Construction of the Hilbert curve

Iterations of the Hilbert curve:

- start with an iterative numbering of 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations
Construction of the Hilbert curve

Recursive construction of the iterations:

- split the quadratic domain into 4 congruent subsquares
- find a space-filling curve for each subdomain
- join the four subcurves in a suitable way
Definition: (Hilbert curve)

- each parameter $t \in \mathcal{I} := [0, 1]$ is contained in a sequence of intervals

 $\mathcal{I} \supset [a_1, b_1] \supset \ldots \supset [a_n, b_n] \supset \ldots,$

 where each interval result from a division-by-four of the previous interval.

- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares)

- the 2D sequence of intervals converges to a unique point q in $q \in Q := [0, 1] \times [0, 1]$ – q is defined as $h(t)$.

Theorem

$h : \mathcal{I} \rightarrow Q$ defines a space-filling curve, **the Hilbert curve**.
Proof: h defines a Space-filling Curve

We need to prove:

- h is a mapping, i.e. each $t \in \mathcal{I}$ has a **unique** function value $h(t)$
 → OK, if $h(t)$ is independent of the choice of the sequence of intervals (see next chapter)

- $h: \mathcal{I} \rightarrow \mathcal{Q}$ is **surjective**:
 - for each point $q \in \mathcal{Q}$, we can construct an appropriate sequence of 2D-intervals
 - the 2D sequence corresponds in a unique way to a sequence of intervals in \mathcal{I} – this sequence defines an original value of q
 ⇒ every $q \in \mathcal{Q}$ occurs as an image point.

- h is **continuous**
Continuity of the Hilbert Curve

A function \(f : I \rightarrow \mathbb{R}^n \) is continuous, if

for each \(\varepsilon > 0 \)

a \(\delta > 0 \) exists, such that

for all \(t_1, t_2 \in I \) with \(|t_1 - t_2| < \delta \), the following inequality holds:

\[
\| f(t_1) - f(t_2) \|_2 < \varepsilon
\]

Strategy for the proof:
For any given parameters \(t_1, t_2 \), we compute an estimate for the distance \(\| h(t_1) - h(t_2) \|_2 \) (functional dependence on \(|t_1 - t_2| \)).

\(\Rightarrow \) for any given \(\varepsilon \), we can then compute a suitable \(\delta \).
Continuity of the Hilbert Curve (2)

- given: \(t_1, t_2 \in I \); choose an \(n \), such that \(|t_1 - t_2| < 4^{-n} \)
- in the \(n \)-th iteration of the interval sequence, all interval are of length \(4^{-n} \)
 \(\Rightarrow [t_1, t_2] \) overlaps at most two neighbouring(!) intervals.
- due to construction of the Hilbert curve, the values \(h(t_1) \) and \(h(t_2) \) will be in neighbouring subsquares with face length \(2^{-n} \).
- the two neighbouring subsquares build a rectangle with a diagonal of length \(2^{-n} \cdot \sqrt{5} \);
 therefore: \(\|h(t_1) - h(t_2)\|_2 \leq 2^{-n} \sqrt{5} \)

For a given \(\epsilon > 0 \), we choose an \(n \), such that \(2^{-n} \sqrt{5} < \epsilon \).
Using that \(n \), we choose \(\delta := 4^{-n} \); then, for all \(t_1, t_2 \) with \(|t_1 - t_2| < \delta \),
we get: \(\|h(t_1) - h(t_2)\|_2 \leq 2^{-n} \sqrt{5} < \epsilon \). Which proves the continuity!
A Grammar for Describing the Hilbert Curve

Construction of the iterations of the Hilbert curve:

→ motivates a Grammar to generate the iterations
A Grammar for Describing the Hilbert Curve

- Non-terminal symbols: \{H, A, B, C\}, start symbol H
- terminal characters: \{↑, ↓, ←, →\}
- productions:

\[
\begin{align*}
H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
A & \leftarrow H \rightarrow A \uparrow A \leftarrow C \\
B & \leftarrow C \leftarrow B \downarrow B \rightarrow H \\
C & \leftarrow B \downarrow C \leftarrow C \uparrow A
\end{align*}
\]

- replacement rule: in any word, all non-terminals have to be replaced at the same time → L-System (Lindenmayer)

⇒ the arrows describe the iterations of the Hilbert curve in “turtle graphics”
A Grammar for Describing the Hilbert Curve

The grammar for the Hilbert curve also closes some open topics concerning its definition (and proof of continuity):

- there are only four basic patterns that occur (corresp. to the symbols \{H, A, B, C\} of the grammar) → closed recursive system!
- two subsequent subsquares of the Hilbert-curve construction share a common edge(!) → follows from the fact that the move operators \{↑, ↓, ←, →\} are sufficient to describe the operators
- last but not least: we have formalised the construction of the iterations (replacing the inexact “rotate patterns such they fit together”)

Michael Bader: Algorithms of Scientific Computing
Space-Filling Curves and their Applications in Scientific Computing, Summer Term 2012
Construction of the Hilbert-Moore Curve

New Construction:

- modified orientation of the subcurves in the first iteration
- leads to a closed curve: start and end point at \((0, \frac{1}{2})\)
Hilbert Order on a Quadtree – Revisited

- traverse quadtree grid cells in Hilbert order
- relate to depth-first traversal of the quaternary tree
Remember: Grammar for the Hilbert Curve

- Non-terminal symbols: \{H, A, B, C\}, start symbol H
- Terminal characters: \{↑, ↓, ←, →\}
- Productions:
 \[
 \begin{align*}
 H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
 A & \leftarrow H \rightarrow A \uparrow A \leftarrow C \\
 B & \leftarrow C \leftarrow B \downarrow B \rightarrow H \\
 C & \leftarrow B \downarrow C \leftarrow C \uparrow A
 \end{align*}
 \]
- Replacement rule: in any word, all non-terminals have to be replaced at the same time \(\rightarrow\) L-System (Lindenmayer)
- Without replacement rule:
 \[
 \begin{align*}
 H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
 & \leftarrow A \uparrow A \uparrow H \rightarrow H \downarrow B \rightarrow H \downarrow B
 \end{align*}
 \]
Remember: Grammar for the Hilbert Curve

- Non-terminal symbols: \{H, A, B, C\}, start symbol H
- Terminal characters: \{↑, ↓, ←, →\}
- Productions:

 \[
 \begin{align*}
 H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
 A & \leftarrow H \rightarrow A \uparrow A \leftarrow C \\
 B & \leftarrow C \leftarrow B \downarrow B \rightarrow H \\
 C & \leftarrow B \downarrow C \leftarrow C \uparrow A \\
 \end{align*}
 \]

- Replacement rule: in any word, all non-terminals have to be replaced at the same time → L-System (Lindenmeyer)

- Without replacement rule:

 \[
 \begin{align*}
 H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
 & \leftarrow A \uparrow A \uparrow H \rightarrow H \downarrow B \rightarrow H \downarrow B \\
 \end{align*}
 \]

→ information on hierarchical levels lost!
Modified Grammar for the Hilbert Curve

- Non-terminal symbols: \{H, A, B, C\}, start symbol \(H\)
- terminal characters: \{↑, ↓, ←, →, (,)\}
- productions:

 \[
 \begin{align*}
 H & \leftarrow (A \uparrow H \rightarrow H \downarrow B) \\
 A & \leftarrow (H \rightarrow A \uparrow A \leftarrow C) \\
 B & \leftarrow (C \leftarrow B \downarrow B \rightarrow H) \\
 C & \leftarrow (B \downarrow C \leftarrow C \uparrow A)
 \end{align*}
 \]

- no additional replacement rule
 → context-free grammar (Chomsky type-2)
- generated strings:

 \[
 \begin{align*}
 H & \leftarrow (A \uparrow H \rightarrow H \downarrow B) \\
 & \leftarrow (A \uparrow (A \uparrow H \rightarrow H \downarrow B) \rightarrow H \downarrow B)
 \end{align*}
 \]
Adaptive Hilbert Traversal – Algorithm

Algorithm 1: Scheme of an adaptive Hilbert traversal

Procedure $H()$ begin

if node cell is a leaf then

// Execute task on current position
execute(...);

else

refineH();
A(); up();
H(); right();
H(); down();
B();
coarsenH();

end

end
Bit-Stream-Encoded Quadtree and Hilbert Order

- encode quadtree as stream of “refinement bits”
- bits provided in depth-first/Hilbert order
Adaptive Hilbert Traversal – Algorithm (2)

if node cell is a leaf then
 // Execute task on current position
 execute (...);
else
 refineH ();
 ...
 coarsenH ();
end

Check for leaf cell:
 • obtain “leaf cell” encoding via bit stream
 • bits in depth-first/Hilbert order: move to next bit after each check

Change of tree level:
 • refineH(): move from parent to first child cell
 • coarsenH(): move from last child cell back to parent