Algorithms of Scientific Computing

Space-Filling Curves in 3D

Michael Bader
Summer Term 2012
Classification of Space-filling Curves

Definition: *(recursive space-filling curve)*

A space-filling curve \(f : \mathcal{I} \rightarrow Q \subset \mathbb{R}^n \) is called **recursive**, if both \(\mathcal{I} \) and \(Q \) can be divided in \(m \) subintervals and sudomains, such that

- \(f_*(\mathcal{I}(\mu)) = Q(\mu) \) for all \(\mu = 1, \ldots, m \), and
- all \(Q(\mu) \) are geometrically similar to \(Q \).

Definition: *(connected space-filling curve)*

A recursive space-filling curve is called **connected**, if for any two neighbouring intervals \(\mathcal{I}(\nu) \) and \(\mathcal{I}(\mu) \) also the corresponding subdomains \(Q(\nu) \) and \(Q(\mu) \) are direct neighbours, i.e. share an \((n - 1)\)-dimensional hyperplane.
Contiguous, Recursive Space-filling Curves

Examples:
- all Hilbert curves (2D, 3D, ...)
- all Peano curves

Properties: connected, recursive SFC are
- continuous (more exact: Hölder continuous with exponent $1/n$)
- neighbourhood-preserving
- describable by a grammar
- describable in an arithmetic form (similar to that of the Hilbert curve)
3D Hilbert Curves

- Wanted: connected, recursive SFC, based on division-by-2
 ⇒ leads to 3 basic patterns:

- in addition: symmetric forms, change of orientation
- always two different orientations of the components
 ⇒ numerous different Hilbert curves
3D Hilbert Curves – Iterations

1st iteration

2nd iteration
3D Hilbert Curve – Arithmetic Representation

Given in the octal system, \(t = 0_8.k_1 k_2 k_3 k_4 \ldots \), then

\[
h(0_8.k_1 k_2 k_3 k_4 \ldots) = H_{k_1} \circ H_{k_2} \circ H_{k_3} \circ H_{k_4} \circ \ldots \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

with operators

\[
H_0 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2}x + 0 \\ \frac{1}{2}y + 0 \\ \frac{1}{2}z + 0 \end{pmatrix} \\
H_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2}x + \frac{1}{2} \\ \frac{1}{2}y + \frac{1}{2} \\ \frac{1}{2}z + 0 \end{pmatrix} \\
H_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2}x + \frac{1}{2} \\ \frac{1}{2}y + \frac{1}{2} \\ \frac{1}{2}z + 0 \end{pmatrix} \\
H_3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2}z + \frac{1}{2} \\ -\frac{1}{2}x + \frac{1}{2} \\ -\frac{1}{2}y + \frac{1}{2} \end{pmatrix}
\]
3D Hilbert Curve – Arithmetic Representation (cont.)

\[
H_4 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} z + 1 \\ -\frac{1}{2} x + \frac{1}{2} \\ \frac{1}{2} y + \frac{1}{2} \end{pmatrix} \quad H_5 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2} x + \frac{1}{2} \\ \frac{1}{2} y + \frac{1}{2} \\ \frac{1}{2} z + \frac{1}{2} \end{pmatrix}
\]

\[
H_6 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} z + \frac{1}{2} \\ \frac{1}{2} y + \frac{1}{2} \\ -\frac{1}{2} x + 1 \end{pmatrix} \quad H_7 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{2} x + 0 \\ -\frac{1}{2} z + \frac{1}{2} \\ -\frac{1}{2} y + 1 \end{pmatrix}
\]

⇒ leads to algorithm analog to 2D Hilbert and 2D Peano
⇒ uses only one pattern; each in only one orientation
3D Hilbert Curves – Variants

Different approximating polygons:

- same basic pattern: same order of the eight sub-cubes
- differences only noticeable from the 2nd iteration
3D Hilbert Curves – Variants (2)

Different orientation of the sub-cubes:

- same basic pattern, same approximating polygon
- differences only visible from 2nd iteration
3D Peano Curves

- Concentration on “switch-back” Peano curves (no Meander-type)
- still lots of different variants
- especially interesting are dimension-recursive variants:

 in each 3D cut, the sub-cubes are again traversed in Peano order
Parallelisation using Space-filling Curves

Problem setting:
- “mesh” (2D, 3D, . . .) of N unknowns ($N \gg 1000$)
- solve linear system(s) of equations
 (maybe repeatedly with varying right-hand side)
- in the system, only spatially neighbouring unknowns are coupled

Parallelisation:
Distribute N unknowns to p partitions, such that
- each partition contains the same number of unknowns
 (load balancing)
- for as many unknowns as possible, all neighbours are in the
 same partition (⇒ avoids communication between partitions)
Further demand: adaptivity

- add further unknowns (during/depending on intermediate results) or drop unknowns
 → example: quadtree/octree grids
- (re-)partitioning required to be fast: must not cost more computation time than going on with a bad load balance
- “shape preserving”: if only few unknowns are added or dropped, the shape of partitions should not change strongly
 ⇒ only few unknowns then need to migrate to another partition

⇒ popular strategy: use space-filling curves
Hölder Continuity of Space-filling Curves

Definition: (Hölder continuous)

A function f is called **Hölder continuous with exponent** r on the interval I, if a constant $C > 0$ exists, such that for all $x, y \in I$:

$$\|f(x) - f(y)\|_2 \leq C |x - y|^r$$

Importance for space-filling curves:

- $|x - y|$ is the distance of the indices
- $\|f(x) - f(y)\|$ is the distance of the image points (in “space”)
- To prove: the Hilbert curve is Hölder continuous with exponent $r = d^{-1}$, where d is the dimension:

$$\|f(x) - f(y)\|_2 \leq C |x - y|^{1/d} = C \sqrt[2d]{|x - y|}$$
Hölder Continuity of the 3D Hilbert Curve

Proof analogous to simple continuity proof:

- given \(x, y \in I \); find an \(n \), such that \(8^{-(n+1)} < |x - y| < 8^{-n} \)
- \(8^{-n} \) is the interval length for the \(n \)-th iteration
 \(\Rightarrow [x, y] \) covers at most two neighbouring(!) intervals.
- per construction of the 3D Hilbert curve, the function values \(h(x) \) and \(h(y) \) are in two adjacent cubes of side length \(2^{-n} \).
- the length of the space diagonal through the two adjacent cubes is \(2^{-n} \cdot \sqrt{1^2 + 1^2 + 2^2} = 2^{-n} \cdot \sqrt{6} \), hence:

\[
\| h(x) - h(y) \|_2 \leq 2^{-n} \sqrt{6} = (8^{-n})^{1/3} \sqrt{6} = \left(8^{-(n+1)}\right)^{1/3} 8^{1/3}\sqrt{6} \\
\leq 2 \sqrt{6} |x - y|^{1/3} \quad \text{q.e.d.}
\]
Hölder Continuity and Parallelisation

• for the Hilbert curve (also Peano curve and all connected, recursive SFC), we have:

\[\| f(x) - f(y) \|_2 \leq C^d \sqrt{|x - y|} \]

• relates the distance \(|x - y|\) between indices to the distance \(\| f(x) - f(y) \|\) of (mesh) points

• gives relation between volume (number of grid cells/points) and extent (e.g. radius) of a partition

⇒ Hölder continuity gives a quantitative estimate for **compactness** of partitions