Exercise 1: Analytical Integration

Consider the functions
\[f(x) = -4x^2 - 2 \]
and
\[g(x) = \left(-16x^3 + 40x^2 - 35x + 11 \right) \]

Compute the antiderivatives and evaluate the integrals.

Exercise 2: Composite Trapezoidal Rule

Compute the antiderivatives and evaluate the integrals.

\[g(x) = \int f(x) \, dx \]
\[g(x) = \int (x^3 - 12x^2 + 45x - 27) \, dx \]
\[g(x) = \int (x^3 - 12x^2 + 45x - 27) \, dx \]
\[g(x) = \int (x^3 - 12x^2 + 45x - 27) \, dx \]

Exercise 3: Composite Simpson Rule

On the same axis as Exercise 2 for the Composite Simpson Rule.

Exercise 4: Archimedes' Hierarchical Approach

In this exercise we will use Archimedes’ approach to approximate the integral. Let \(E \subseteq [a, b] \) be a subset of \(\mathbb{R} \) and \(\varepsilon > 0 \) be a vector of function values with \(\varepsilon_i = \frac{\varepsilon}{2^{i-1}} \).

Write a function that transforms a given vector \(u \) to a similar vector \(v \) containing the hierarchical coefficients according to the definition above and \(n \) being the number of trapezoids used.

Write a function that approximates the integral via the Composite Trapezoidal Rule. Complete the function template.

Write a function that transforms \((2^l-1) \) functional values in \(u \) to hierarchical coefficients.

In this exercise we will use Archimedes’ approach to approximate the integral. Let \(E \subseteq [a, b] \) be a subset of \(\mathbb{R} \) and \(\varepsilon > 0 \) be a vector of function values with \(\varepsilon_i = \frac{\varepsilon}{2^{i-1}} \).

Write a function that transforms a given vector \(u \) to a similar vector \(v \) containing the hierarchical coefficients according to the definition above and \(n \) being the number of trapezoids used.

Write a function that approximates the integral via the Composite Trapezoidal Rule. Complete the function template.