Exercise 1: Hierarchization in Higher Dimensions

In this exercise we will implement the multi-recursive algorithm for hierarchization of a multi-dimensional regular sparse grid. The structure of the code resembles strongly the one-dimensional case, and so we again have a class \(\text{PagodaFunction} \) representing our grid points.

(i) Implement the refinement criterion \(\text{MinLevelCriterion} \) that adds all points up to a specified level to a given grid.
 \[\text{Hint:} \quad \text{In your grid traversal, try to avoid multiple visits to the same grid points.} \]

(ii) Implement the function \(\text{hierarchize} \) efficiently using a recursive approach.
 \[\text{Hint:} \quad \text{The underlying traversal algorithm can be implemented similar to the one in (i).} \]

(iii) Implement a function to compute the volume of the sparse grid interpolant.

For the solution code look at the pdf exported from IPython Notebook.

Exercise 2: The Combination Technique – A Different View on Sparse Grids

Dealing with hierarchical bases often turns out to be sophisticated. On this worksheet we will therefore see how the so-called combination technique finds a sparse grid interpolant, that approximates a function on a number of full grids, each consisting only of a “relatively small” number of grid points.

Let \(u_l (l \in \mathbb{N}^2) \) for \(u : [0, 1]^2 \to \mathbb{R} \) the interpolant in \(V_l \) (interpolating piecewise bilinearly at the inner grid points, at the boundary \(u \) is assumed to be zero again).

(i) \(V_l \) can be decomposed into a set of subspaces \(W_l \). Accordingly, the interpolant \(u_l \in V_l \) can be written as a sum of \(w_l \in W_l \).

\[\text{Spot the grid associated with } u_{(3,2)} \text{ in the right part of Figure 1. Identify those subspaces in the left part that are needed to reconstruct } u_{(3,2)}. \]
Figure 1: The two parts in the picture show the grid points and supports associated with interpolants w_l (left) and u_l (right) up to level 4 for the 2d case.

We need to “collect” those w_l with indices bound component-wise by l. In subspace scheme (see left hand side of Figure 1) these are the subspaces in the rectangular left upper part relative to l.

Written as a sum this gives us:

$$u_l = \sum_{l' \leq l} w_{l'}$$

Note that weights are not needed yet.

(ii) Use the result from (i) to rewrite

$$\sum_{|l|_1 = n+1} u_l, \quad n \in \mathbb{N}$$

for the two-dimensional case as a weighted sum of w_l.

Hint: Look at the subspace scheme in Figure 1 and count the occurrences of each subspace in the sum. What do you notice when comparing w_l with common level $n = |l|_1 + \dim - 1$?

Using the previous result we start with

$$\sum_{|l|_1 = n+1} u_l = \sum_{|l|_1 = n+1} \sum_{l' \leq l} w_{l'}.$$

For the reorganization part we first count which $w_{l'}$ appears how many times in the sums. (remember, this is 2d!)

$|l'|_1 = n + 1$: each w_{l} has one occurrence

$|l'|_1 = n$: each w_{l} has two occurrences

...
\[|l'|_1 = k: \text{ each has } n + 2 - k \text{ occurrences}\]

Technical explanation: Let \(l\) be of level \(n + 1\), i.e. \(|l|_1 = n + 1\). From \(l\) construct all possible \(l'\) of level \(n\) with \(|l'|_1 \leq l\). Those are exactly two, as there are two components \((2d!)\) that can be decreased by 1. Applying this scheme down to level 1 then leads to the result above.

Written as an explicit sum formula this is:

\[
\sum_{|l|_1 = n+1} u_{l} = \sum_{|l|_1 \leq n+1} (n + 2 - |l'|_1) w_{l'}
\]

(iii) In the final step use the previous results to give a representation of the sparse grid interpolant

\[u_n^D := \sum_{|l|_1 \leq n+1} w_{l}\]

as a weighted sum of \(u_{l}\). Again, count the occurrences of the \(w_{l}\).

By looking at the subspace scheme rather than by looking at the formulas it becomes clear that the following holds:

\[
\sum_{|l|_1 \leq n+1} w_{l} = \sum_{|l|_1 = n+1} u_{l} - \sum_{|l|_1 = n} u_{l}
\]

(iv) Assume you are talking to a person who knows how to approximate the volume \(F_2(u)\) through the trapezoidal rule (in 2d) with respect to \(u_{l}\). Give instructions on how to write a program that implements a sparse grid approximation of \(F_2(u)\). Remember Archimedes quadrature.

- First idea: Replace volume \(F_2(u)\) by the sparse grid volume approximation \(F_2(u_n^D)\).

- Second idea: Think of the interpolant as a sum of \(u_{l}\). We know those \(u_{l}\) (interpolating \(u\) on regular grids) as well as their volumes (trapezoidal rule in 2d).

- Together with the weights from the previous part we get

\[F_2(u) \approx F_2(u_n^D) = \sum_{|l|_1 = n+1} F_2(u_{l}) - \sum_{|l|_1 = n} F_2(u_{l})\]

(v) Compare this method with Archimedes quadrature — what are the (dis-)advantages?

Advantages:

- Simpler program code (Haven’t you tried coding them? Do it! You’ll agree...)

- It might be possible to reuse an existing program for the trapezoidal rule on common regular grids (advantage is even bigger for more complex applications, e.g. when computing a sparse grid solution for a fluid simulation)

- For comprehensive computations the program is more likely and easy to be parallelized as the single grids are processed independently from each other

Disadvantages:

- No straight forward approach to include adaptivity, i.e. it’s not possible to automatically find the right evaluation points

- Recursion is much more beautiful!