Algorithms of Scientific Computing

From Quadtrees to Space-Filling Curves

Michael Bader

Summer Term 2013
Overview: Modelling of Geometric Objects

Surface-oriented models:
- wire-frame models
- augmented models using Bezier curves and planes
- typically described by graphs on nodes, edges, and faces

Volume-oriented models:
- Constructive Solid Geometry (boolean operations on primitives)
- voxel models: place object in a grid
- octrees: recursive refinement of voxel grids
Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares
Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares
- adaptive refinement possible
- terminate, if squares entirely within or outside domain
Number of Quadtree Cells to Store a Rectangle

Terminal \((t_k)\) and boundary \((b_k)\) cells after \(k\) refinement steps:

\[
\begin{align*}
b_k &= 2 \cdot b_{k-1} \\
t_k &= t_{k-1} + 2 \cdot b_{k-1}
\end{align*}
\]

\[
\Rightarrow \quad b_k = 2^{k-2} \cdot b_2 = \frac{5}{2} \cdot 2^k \\
t_k = \ldots = 5 \cdot 2^k - 14
\]
Number of Quadtree Cells to Store a Rectangle

- uniformly ref. voxel-grid (level k): $(2^{d=2})^k = (2^k)^2 = \mathcal{O}(N^2)$ cells
- quadtree-refined grid (level k): $\frac{15}{2} \cdot 2^k - 14 = \mathcal{O}(N)$ cells

\Rightarrow number of cells proportional to length of boundary ($N := 2^k$)
Storing a Quadtree – Sequentialisation

- sequentialise cell information according to depth-first traversal
- relative numbering of the child nodes determines sequential order
Storing a Quadtree – Sequentialisation

- sequentialise cell information according to **depth-first traversal**
- relative numbering of the child nodes determines sequential order
- here: leads to so-called **Morton order**
Morton Order ("Z curve")

Relation to bit arithmetics:

- odd digits: position in vertical direction
- even digits: position in horizontal direction
Morton Order and Cantor’s Mapping

Georg Cantor (1877):

\[0.0111001 \ldots \rightarrow \left(0.0110\ldots \right) \]

- **bijective** mapping \([0, 1] \rightarrow [0, 1]^2\)
- proved identical cardinality of \([0, 1]\) and \([0, 1]^2\)
- provoked the question: is there a **continuous** mapping? (i.e. a curve)
Preserving Neighbourship for a 2D Octree

Requirements:
- consider a simple 4×4-grid
- uniformly refined
- subsequently numbered cells should be neighbours in 2D

Leads to (more or less unique) numbering of children:
Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D
Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D
- here: similar to the concept of Hilbert curves
Open Questions

Algorithmics:
- How do we describe the sequential order algorithmically?
- What kind of operations are possible?
- Are there further “orderings” with the same or similar properties?

Applications:
- Can we quantify the “neighbour” property?
- In what applications can this property be useful?
- Which other properties and/or operations can be useful?