Algorithms of Scientific Computing

Discrete Fourier Transform (DFT)

Michael Bader
Summer Term 2014
Fast Fourier Transform – Outline

- Discrete Fourier transform
- Fast Fourier transform
- Special Fourier transform:
 - real-valued FFT
 - sine/cosine transform
- Applications:
 - Fast Poisson solver (FST)
 - Computergraphics (FCT)
- Efficient Implementation
Discrete Fourier Transform (DFT)

Definition:
For a vector of N complex numbers $(f_0, \ldots, f_{N-1})^T$, the **discrete Fourier transform** (DFT) is given by the vector $(F_0, \ldots, F_{N-1})^T$, where

$$F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{-i2\pi nk/N}.$$

Interpretation:
The DFT can be derived as
- trigonometric interpolation/approximation
- approximation of the coefficients of the Fourier series
DFT as Interpolation (1)

Interpolation problem:

- \(N\) ansatz functions: \(g_k(x) := e^{ikx}\) in the interval \([0, 2\pi]\), \(k = 0, \ldots, N - 1\)
- \(N\) supporting points: \(x_n := \frac{2\pi n}{N}, n = 0, \ldots, N - 1\)
- \(N\) interpolation value \(f_n, n = 0, \ldots, N - 1\)
- find \(N\) weights \(F_k\) such that at all supporting points

\[
f_n = \sum_{k=0}^{N-1} F_k g_k(x_n) \quad \Leftrightarrow \quad f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.
\]

“trigonometric interpolation”
DFT as Interpolation (2)

Interpolation problem:

- \(N \) ansatz functions: \(\tilde{g}_k(z) := z^k \) (complex unit polynomials), \(k = 0, \ldots, N - 1 \)
- \(N \) supporting points: \(z_n := e^{i2\pi n/N} = \omega^*_n \), where \(\omega_N := e^{i2\pi/N} \)
- \(N \) interpolation values \(f_n, n = 0, \ldots, N - 1 \), respectively.
- find the \(N \) weights \(F_k \) such that at all supporting points

\[
f_n = \sum_{k=0}^{N-1} F_k \tilde{g}_k(z_n) \quad \iff \quad f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.
\]

Polynomial interpolation at the "complex unit roots" \(\omega^*_n \).
Interpretation of the Interpolation Problem

Starting from the first formulation,

\[f_n = \sum_{k=0}^{N-1} F_k g_k(x_n), \quad g_k(x_n) = e^{i2\pi nk/N}, \]

we look for a representation of the signal \(f_n \) – or of a function \(f(x) \) – of the form

\[f(x) = \sum_{k=0}^{N-1} F_k g_k(x), \quad g_k(x) = e^{i2\pi kx}. \]

The ansatz functions are sine or cosine oscillations:

\[e^{ikx} = \cos(kx) + i \sin(kx) \]
Interpretation of the Interpolation Problem (2)

Conclusions:

- we look for the representation of a periodic function as a sum of sines and cosines
- the F_k are, thus, called Fourier coefficients:
 - k represents the wave number
 - the value of F_k represents the amplitude of the corresponding frequency
- the Fourier transform leads to a frequency spectrum
- useful when a problem is easier to solve in the frequency domain than in the spatial domain.
Example: Spatial vs. Frequency Domain

3D-Kurve des Signals s_1

Re(s_1)

Im(s_1)

t-Werte

Re(s_2)

Im(s_2)

t-Werte

Re(s_3)

Im(s_3)

t-Werte

Frequenzspektrum f_1

Frequenzspektrum f_2

Frequenzspektrum f_3

Anteile

0 5 10 15

Frequenzen

0 5 10 15

Frequenzen

0 5 10 15

Frequenzen
Example: Spatial vs. Frequency Domain

\[s_1 = e^{3it}, \quad s_2 = 0.2i + 0.8e^{it}, \quad s_3 = e^{it} + 0.2e^{12it} \]
Solution of the Interpolation Problem

Both interpolation problems lead to the identical linear systems of equations:

\[f_n = \sum_{k=0}^{N-1} F_k \omega_{N}^{nk}, \quad \text{for all } n = 0, \ldots, N - 1; \]

where \(\omega_{N} := e^{i2\pi/N} \), i.e. \(\omega_{N}^{nk} := e^{i2\pi nk/N} \).

If we write the vectors of the \(f_n \) and \(F_k \) as \(f := (f_0, \ldots, f_{N-1}) \) and \(F := (F_0, \ldots, F_{N-1}) \), the linear system of equations can be formulated in matrix-vector notation

\[WF = f, \]

where the entries of the Fourier matrix \(W \) are given by \(W_{nk} := \omega_{N}^{nk} \).
Properties of the Fourier Matrix W

- W is symmetric: $W = W^T$, and has the form

$$W = \begin{pmatrix}
\omega_0^N & \omega_1^N & \omega_2^N & \ldots & \omega_{(N-1)}^N \\
\omega_1^N & \omega_2^N & \omega_3^N & \ldots & \omega_{2(N-1)}^N \\
\omega_2^N & \omega_3^N & \omega_4^N & \ldots & \omega_{3(N-1)}^N \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\omega_{(N-1)}^N & \omega_{2(N-1)}^N & \omega_{3(N-1)}^N & \ldots & \omega_{(N-1)(N-1)}^N
\end{pmatrix}$$

- $W (W^T)^* = WW^H = N I$, since

$$\left[WW^H \right]_{kl} = \sum_{j=0}^{N-1} \omega_N^{kj} (\omega_N^{lj})^* = \sum_{j=0}^{N-1} \omega_N^{(k-l)j} = \begin{cases} N & \text{if } k = l \\ 0 & \text{if } k \neq l. \end{cases}$$
Computation of the Fourier Coefficients F_k

- Since $WW^H = NI$, the inverse of W is $W^{-1} = \frac{1}{N}W^H$:

$$W^{-1} = \frac{1}{N} \begin{pmatrix}
\omega_N^0 & \omega_N^0 & \omega_N^0 & \cdots & \omega_N^0 \\
\omega_N^{-1} & \omega_N^{-2} & \omega_N^{-4} & \cdots & \omega_N^{-(N-1)} \\
\omega_N^{-1} & \omega_N^{-2} & \omega_N^{-4} & \cdots & \omega_N^{-(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\omega_N^{-(N-1)} & \omega_N^{-2(N-1)} & \omega_N^{-(N-1)} & \cdots & \omega_N^{-(N-1)(N-1)}
\end{pmatrix}$$

\Rightarrow the vector F of the Fourier coefficients can be computed easily as a matrix-vector product – with computational effort $O(N^2)$:

$$F = \frac{1}{N}W^H f \quad \text{or} \quad F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n \omega_N^{-nk}.$$
Inverse Discrete Fourier Transform (IDFT)

Definition:
The inverse Discrete Fourier Transform (IDFT) of the vector \((F_0, \ldots, F_{N-1})\) is given by the vector \((f_0, \ldots, f_{N-1})\), where

\[
f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.
\]

Observation:
DFT and IDFT are inverse operations:

\[
F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{-i2\pi nk/N}, \quad f_n = \sum_{k=0}^{N-1} F_k e^{i2\pi nk/N}.
\]

\[
\mathbf{F} = \text{DFT}(\text{IDFT}(\mathbf{F})) \quad \text{or} \quad \mathbf{f} = \text{IDFT}(\text{DFT}(\mathbf{f})).
\]
The Pair DFT/IDFT as Matrix-Vector Product

With the notation $\omega_N := e^{i2\pi/N}$, i.e. $\omega_N^{-nk} := e^{-i2\pi nk/N}$, we formulate the DFT/IDFT as

$$F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n \omega_N^{-nk}$$

$$f_n = \sum_{k=0}^{N-1} F_k \omega_N^{nk}$$

With the vectors $\mathbf{f} := (f_0, \ldots, f_{N-1})^T$ and $\mathbf{F} := (F_0, \ldots, F_{N-1})^T$, we denote (and compute) the DFT and IDFT as matrix-vector products

$$\mathbf{F} = \frac{1}{N} \mathbf{W}^H \mathbf{f}, \quad \mathbf{f} = \mathbf{W} \mathbf{F},$$

where the elements of the Fourier matrix \mathbf{W} are $W_{nk} := \omega_N^{nk}$.
Properties of the DFT

- DFT and IDFT are (as a matrix-vector product) **linear**:

\[
\text{DFT}(\alpha f + \beta g) = \alpha \text{DFT}(f) + \beta \text{DFT}(g)
\]

\[
\text{IDFT}(\alpha f + \beta g) = \alpha \text{IDFT}(f) + \beta \text{IDFT}(g)
\]

- since \(\omega_{nk}^N = \omega_{n}^{n(k+N)} = \omega_{N}^{(n+N)k} \), the \(f_n \) and the \(F_k \) are **periodic**:

\[
f_{n+N} = f_n \quad F_{k+N} = F_k \quad \text{for all} \ k, n \in \mathbb{Z}
\]
Alternative Forms of the DFT

Possible variants (in all imaginable combinations):

- Scaling factor $\frac{1}{N}$ in the IDFT instead of the DFT; alternatively a factor $\frac{1}{\sqrt{N}}$ in DFT and IDFT.
- Switched signs in the exponent of the exponential function in DFT and IDFT.
- Use j for the imaginary unit (electrical engineering).

Shift of indices:

- Periodic data: $F_k = F_{k+N}$
- Aliasing of frequencies: $e^{-i2\pi nk/N} = e^{-i2\pi n(k\pm N)/N}$
DFT with Shifted Indices

Data and frequencies “symmetric”:

\[
F_k = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_n e^{-i2\pi nk/N}, \quad f_n = \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} F_k e^{i2\pi nk/N}
\]

In general:

\[
F_k = \frac{1}{N} \sum_{n=P+1}^{P+N} f_n e^{-i2\pi nk/N}, \quad f_n = \sum_{k=Q+1}^{Q+N} F_k e^{i2\pi nk/N}
\]
DFT in Program Libraries

\[F_{k+1} = \sum_{n=0}^{N-1} f_{n+1} e^{-i2\pi nk/N} \quad k = 0, \ldots, N - 1 \]

\[f_{n+1} = \frac{1}{N} \sum_{k=0}^{N-1} F_{k+1} e^{i2\pi nk/N} \quad n = 0, \ldots, N - 1 \]

Maple: \(\frac{1}{\sqrt{N}} \) as factor for DFT and IDFT.

Index shift by +1, since:

- Data/coefficients start at index 0
- Arrays to store the numbers start at index 1