Algorithms of Scientific Computing

Discrete Sine Transform (DST)

Michael Bader
Summer Term 2014
DFT and Symmetry

<table>
<thead>
<tr>
<th>INPUT</th>
<th>TRANSFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>real symmetry</td>
<td>(f_n \in \mathbb{R} \rightarrow) Real DFT (RDFT)</td>
</tr>
<tr>
<td>even symmetry</td>
<td>(f_n = f_{-n} \rightarrow) Discrete Cosine Transform (DCT)</td>
</tr>
<tr>
<td>odd symmetry</td>
<td>(f_n = -f_{-n} \rightarrow) Discrete Sine Transform (DST)</td>
</tr>
</tbody>
</table>

“QUARTER-WAVE” Transform

<table>
<thead>
<tr>
<th>INPUT</th>
<th>TRANSFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>even symmetry</td>
<td>(f_n = f_{-n-1} \rightarrow) QW-DCT</td>
</tr>
<tr>
<td>odd symmetry</td>
<td>(f_n = -f_{-n-1} \rightarrow) QW-DST</td>
</tr>
</tbody>
</table>
Real-valued Input Data with “Odd” Symmetry

Given: $2N$ input data f_{-N+1}, \ldots, f_N, all $f_n \in \mathbb{R}$, with

$$f_{-n} = -f_n,$$

in particular $f_0 = f_N = f_{-N} = 0$

The DFT then has the following form:

$$F_k = \frac{1}{2N} \sum_{n=-N+1}^{N} f_n \omega_{2N}^{-nk}$$

$$= \frac{1}{2N} \left(f_0 + \sum_{n=1}^{N-1} \left(f_n \omega_{2N}^{-nk} + f_{-n} \omega_{2N}^{nk} \right) + f_N \omega_{2N}^{-Nk} \right)$$

$$= \frac{1}{2N} \sum_{n=1}^{N-1} f_n \left(\omega_{2N}^{-nk} - \omega_{2N}^{nk} \right) = -i \frac{N-1}{N} \sum_{n=1}^{N-1} f_n \sin \left(\frac{\pi nk}{N} \right).$$
Symmetry in the Coefficients

Transform to f_n with symmetry $f_{-n} = -f_n$ gives:

$$F_k = -i \frac{N-1}{N} \sum_{n=1}^{N-1} f_n \sin \left(\frac{\pi nk}{N} \right) \quad \text{for } k = -N + 1, \ldots, N.$$

Same symmetrie in the coefficients F_k:

$$F_{-k} = -i \frac{N-1}{N} \sum_{n=1}^{N-1} f_n \sin \left(\frac{\pi n(-k)}{N} \right) = -i \frac{N-1}{N} \sum_{n=1}^{N-1} f_n \left(- \sin \frac{\pi nk}{N} \right) = -F_k$$

\Rightarrow leads to the same (up to scaling) “discrete sine transform”
Discrete Sine Transform (DST)

From DFT of real-valued, odd symmetric data:

\[F_k = -\frac{i}{N} \sum_{n=1}^{N-1} f_n \sin \left(\frac{\pi nk}{N} \right), \quad k = 1, \ldots N - 1. \]

Analogue calculation for IDFT gives:

\[f_n = 2i \sum_{k=1}^{N-1} F_k \sin \left(\frac{\pi nk}{N} \right), \quad n = 1, \ldots N - 1. \]

⇒ definition of the discrete sine transform (\(\hat{F}_k := iF_k \)):

\[\hat{F}_k = \frac{1}{N} \sum_{n=1}^{N-1} f_n \sin \left(\frac{\pi nk}{N} \right), \quad f_n = 2 \sum_{k=1}^{N-1} \hat{F}_k \sin \left(\frac{\pi nk}{N} \right), \]
Computation of the Discrete Sine Transform

Via pre-/postprocessing:

(1) generate $2N$ vector with odd symmetry

$$x_{-k} = -x_k \quad \text{for } k = 1, \ldots, N - 1$$

$$x_0 = x_N = 0$$

(2) coefficients X_k via fast, real-valued FFT on vector x

(3) postprocessing: $\hat{X}_k = -\text{Im}\{X_k\}$ for $k = 1, \ldots, N - 1$.

(4) if necessary: scaling
Summary: Survey on DCT/DST Variants

Symmetry properties ⇔ how is data continued at boundaries:

<table>
<thead>
<tr>
<th>beg. \ end</th>
<th>even</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>odd</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

⇒ 4 possibilities

<table>
<thead>
<tr>
<th>beg. \ end</th>
<th>mirror</th>
<th>copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>mirror</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>copy</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

⇒ 4 possibilities

⇒ in total: 16 possibilities (8 DCT, 8 DST)
Summary: Survey on DCT/DST Variants (2)

Common schemes of DCT (left) and DST (right) (images: Wikipedia):

DCT-I:

\[N = 11 \]

DCT-II:

DCT-III:

DCT-IV:

\[N = 9 \]

DST-I:

DST-II:

DST-III:

DST-IV:
Application: DCT/DST for PDE (Spectral Methods)

nice application: DST for Fast Poisson Solver

Space domain \rightarrow frequency domain

Problem \rightarrow DST/DCT \rightarrow Solution

Attention: limits/problems for using DFT with PDE include
- irregular (i.e. non-rectangular) domains
- variable coefficients in problem
⇒ other methods: FVM, FEM (fast linear solvers, multigrid, etc.)