Algorithms of Scientific Computing

Parallelisation Using Space-Filling Curves

Michael Bader
Summer Term 2014
Parallelisation using Space-filling Curves

Problem setting:
- “mesh” (2D, 3D, …) of \(N \) unknowns (\(N \gg 1000 \))
- solve linear system(s) of equations (maybe repeatedly with varying right-hand side)
- in the system, only spatially neighbouring unknowns are coupled

Parallelisation:
Distribute \(N \) unknowns to \(p \) partitions, such that
- each partition contains the same number of unknowns (load balancing)
- for as many unknowns as possible, all neighbours are in the same partition (⇒ avoids communication between partitions)
Parallelisation using Space-filling Curves (2)

Further demand: adaptivity

- add further unknowns (during/depending on intermediate results) or drop unknowns
- (re-)partitioning required to be fast: must not cost more computation time than going on with a bad load balance
- “shape preserving”: if only few unknowns are added or dropped, the shape of partitions should not change strongly
 \[\Rightarrow\] only few unknowns then need to migrate to another partition

\[\Rightarrow\] popular strategy: use space-filling curves
Generic Space-filling Heuristic

Bartholdi & Platzman (1988):

1. Transform the problem in the unit square, via a space-filling curve, to a problem on the unit interval
2. Solve the (easier) problem on the unit interval

For parallelisation: strategy to determine partitions

1. use a space-filling curve to generate a sequential order on grid cells
2. do a 1D partitioning on the list of cells (cut into equal-sized pieces, or similar)

Possible implementations:

1. compute SFC index (inverse mapping) and sort w.r.t. index
2. modify grammar-based traversals
Hilbert-Curve Partitions on a Cartesian Grid

- Hilbert order traversal provides sequential order on grid cells
- Hilbert curve splits vertices into right/left (red/green) set
Turtle Grammar for Left-Right Classification

H:

L:

B:

E:

R:

T:
Example: Hilbert-Curve Partitions on Quadtrees

- here: with so-called **ghost cells** (data exchange with neighbours)
 → processed in identical order in both partitions
Recall: Grammar to Describe the Hilbert Curve

Construction of the iterations of the Hilbert curve:

Question:
Can this grammar be used to generate **adaptive** Hilbert orders?

Problem:
Words generated by the grammar do not allow reproduction of the refinement info!
A Grammar for Hilbert Orders on Quadtrees

- Non-terminal symbols: \{H, A, B, C\}, start symbol H
- terminal characters: \{↑, ↓, ←, →, (,)\}
- productions:

 \[
 H \leftarrow (A \uparrow H \rightarrow H \downarrow B)
 \]

 \[
 A \leftarrow (H \rightarrow A \uparrow A \leftarrow C)
 \]

 \[
 B \leftarrow (C \leftarrow B \downarrow B \rightarrow H)
 \]

 \[
 C \leftarrow (B \downarrow C \leftarrow C \uparrow A)
 \]

⇒ arrows describe the iterations of the Hilbert curve in “turtle graphics”
⇒ terminals (and) mark change of levels: “up” and “down”
⇒ cmp. algorithm in Python script `sfc_hilbert_plotter_adap`
Hilbert-Order Bitstream-Encoding of a Quadtree
Refinement-Tree Encoding of a Quadtree
Refinement-Tree Encoding of a Quadtree (2)

REFTREE algorithm for partitioning:

- attributed quadtree with number of leaves/nodes of the subtree for each node
- allows to determine whether a certain node/subtree may be skipped by the current partition (if index of first & last leave/node are given)
- disadvantage of data structure: required information spread across several locations in the stream
 ⇒ may be fixed by modified depth-first order
Towards Parallelisation

Refinement-Tree Encoding with Modified Depth-First Order

(numbers in the tree represent position of resp. node information in the stream)
Hölder Continuity of Space-filling Curves

Definition: (Hölder continuous)

A function f is called Hölder continuous with exponent r on the interval I, if a constant $C > 0$ exists, such that for all $x, y \in I$:

$$\|f(x) - f(y)\|_2 \leq C |x - y|^r$$

Importance for space-filling curves:

- $|x - y|$ is the distance of the indices
- $\|f(x) - f(y)\|$ is the distance of the image points (in "space")
- To prove: the Hilbert curve is Hölder continuous with exponent $r = d^{-1}$, where d is the dimension:

$$\|f(x) - f(y)\|_2 \leq C |x - y|^{1/d} = C \sqrt[1/d]{|x - y|}$$
Hölder Continuity of the 3D Hilbert Curve

Proof analogous to simple continuity proof:

- given $x, y \in I$; find an n, such that $8^{-(n+1)} < |x - y| < 8^{-n}$
- 8^{-n} is the interval length for the n-th iteration
 $\Rightarrow [x, y]$ covers at most two neighbouring(!) intervals.
- per construction of the 3D Hilbert curve, the function values $h(x)$ and $h(y)$ are in two adjacent cubes of side length 2^{-n}.
- the length of the space diagonal through the two adjacent cubes is $2^{-n} \cdot \sqrt{1^2 + 1^2 + 2^2} = 2^{-n} \cdot \sqrt{6}$, hence:

 \[
 \| h(x) - h(y) \|_2 \leq 2^{-n} \sqrt{6} = (8^{-n})^{1/3} \sqrt{6} = \left(8^{-(n+1)}\right)^{1/3} 8^{1/3} \sqrt{6} \\
 \leq 2 \sqrt{6} |x - y|^{1/3} \quad \text{q.e.d.}
 \]
Hölder Continuity and Parallelisation

- for the Hilbert curve (also Peano curve and all connected, recursive SFC), we have:

\[\|f(x) - f(y)\|_2 \leq C \sqrt{|x - y|} \]

- relates the distance \(|x - y|\) between indices to the distance \(\|f(x) - f(y)\|\) of (mesh) points

- index distance \(|x - y|\) equivalent to area covered by the corresponding curve section \(\rightarrow\) parameterised by area

- leads to relation between volume (number of grid cells/points) and extent (e.g. radius) of a partition

\(\Rightarrow\) Hölder continuity gives a quantitative estimate for compactness of partitions