Algorithms of Scientific Computing
Hierarchical Methods and Sparse Grids
– Algorithms and Data Structures for Sparse Grids –

Michael Bader

Technische Universität München

Summer Term 2014
Part I

Algorithms and Data Structures

- We will now look at typical sparse grid algorithms
- Can, e.g., be used for hierarchization/dehierarchization, integration, data mining, solution of PDE, ...
- important: *adaptive* representation
- Algorithms depend on data structure:
 - Efficient traversal of sparse grid necessary
 - Thus, we deal with data structures for sparse grids, too
Data Structures \((d = 1)\)

- How to store function \(u : [0, 1] \rightarrow \mathbb{R}\) in hierarchical representation (i.e. surpluses \(v_{l,i}\))?
- Order and store grid points and associated values in binary tree
 - Root is node \(x_{1,1} = 1/2\)
 - Children of node \(x_{l,i}\) are – if existent – the grid points \(x_{l+1,2i-1}\) and \(x_{l+1,2i+1}\) of level \(l+1\)
 - Alternative point of view if child does not exist: Complete subtree of binary tree starting from child with all surpluses set to 0
Data Structures \((d = 1)\) (2)
Typical Algorithms ($d = 1$)

Hierarchization and Dehierarchization

- Prototype for typical algorithm (c.f. tutorials)
- Our data structure has to allow
 1. Iteration over all grid points, considering the hierarchical relations
 - E.g. for hierarchization: first handle all grid points in the support of $\phi_{l,i}$, then compute $v_{l,i}$
 2. Access to hierarchical neighbors: grid points at interval boundaries of support of $\phi_{l,i}$ (if possible – exception for points 0 and 1 as not in the tree), e.g. to compute

$$v_{l,i} = u_{l,i} - \frac{1}{2}(u_l + u_r).$$
Typical Algorithms \((d = 1)\) (2)

- Hierarchical neighbors are easy to find geometrically
 \[x_{l,i-1}, \quad x_{l,i+1} \]
- But have even indices \(\Rightarrow\) really are on another level \((< l)\)
- In the binary tree structure:
 - Can be found on way from root to node
 - One is parent node
- For hierarchization/dehierarchization: pass hierarchical neighbors as additional parameters

Developing algorithms:
- Try to store all information to process one node at the node and its hierarchical neighbors
- Access to other nodes typically expensive
- Tree traversal with “supply of hierarchical neighbors” only linear in number of nodes
Data Structures and Typical Algorithms \((d > 1)\)

- What data structure to use in more than one dimension?
- Algorithmically: use construction of basis functions as product of one-dimensional hats. Ideally:
 - Use a loop \(1, \ldots, d\) over the dimension
 - Apply \(1d\) algorithm on one-dimensional structures in each dimension (see also worksheet 7)

\[\Rightarrow\] Need access to hierarchical neighbors in each spacial direction; implies to create binary tree structure in each dimension

- Disadvantages:
 - Storage requirements \((2d\) pointers)
 - High effort to keep structure consistent when inserting or deleting points
If you could recognize anything, it would be binary tree structures for rows (black) and columns (magenta)
Data Structures and Typical Algorithms ($d > 1$) (3)

Often better:

- Store in a node only two pointers for one direction (e.g. x_1)
- A binary tree of nodes is a row (a $1d$ structure parallel to the x_1 axis)
- For next spatial direction x_2, only a binary tree in x_2 direction required
- Stores one plane parallel to x_1–x_2 coordinate plane; nodes are the binary trees with $1d$ structures
- For each additional spatial direction x_d build binary tree with ($d - 1$)-dimensional structures as nodes

- Disadvantage: Access to hierarchical neighbors not that easy any more (except for x_1-direction)
- But can be achieved without much more computational effort by suitable reordering of loops and tree traversals
Already more clear: One plane (two-dimensional structure) consists of one binary tree (magenta) of which the nodes are binary trees (black) for each row.
Hash table

- Much more comfortable (and not too inefficient) alternative
- Store coefficients as target values, with, e.g., \((\vec{l}, \vec{i})\) as keys
- No need to care about tree structures
- Only requires computation of indices of accessed nodes (hierarchical neighbor, . . .)

⇒ Best solution for your own sparse grid experiments

Further assumptions on data structures

- Algorithms will assume that all hierarchical neighbors exist for each grid point

⇒ If creating grid points adaptively, create them if necessary
- No further assumptions
Data Structures for Regular Sparse Grids

Array-Based Data Structures
- Cartesian meshes with $2^{l_1} \times 2^{l_2} \times \ldots \times 2^{l_d}$ grid points
- suggests classical array indexing similar to $i \cdot n + j$
 → question: what is the “fastest-running” index?
- number of grid points per subspace ist constant along “diagonals”, i.e., for constant $|l|_1$
 → sequentialized storage scheme for subspaces
 → start of each subgrid can be easily computed
 → index offset to hierarchical neighbours may be computed
- additional considerations: best layout for vectorization, parallelization, etc.

Towards Dimensional Adaptivity
- add or remove entire subspaces/subgrids in an adaptive fashion
- may introduce higher accuracy only in selected dimensions
Example – Array-Based Data Structures (Buse et al., ISPDC 2012)

- note uniform vs. non-uniform index offset for access to hierarchical parents/neighbours in x- vs. y direction
Summary

Data Structures

- array-based for regular sparse grids and combination technique (see tutorials)
- hierarchical adaptivity reflected by tree-based data structures (but: more complicated in higher dimensions)
- hash-based data structures
- dimensional adaptivity allows to stick to array-based data structures

Algorithms

- hierarchisation and dehierarchisation: tree-based recursion plus “hierarchical neighbours”
- archimedes quadrature → recursion on dimensions
- much more complicated algorithms, if we want to use sparse grids for solution of partial differential equations
Part II

Remember: Classification with Sparse Grids
Recall: Sparse Grid Classification

- Given a training set (normalized)

\[S := \left\{ (\vec{x}_i, y_i) \in [0, 1]^d \times \{+1, -1\} \right\}_{i=1}^m \]

- Reconstruct piecewise d-linear sparse grid approximation u of f:

\[f_N(\vec{x}) = \sum_{i=1}^{N} v_i \phi_i(\vec{x}) \]

- Solve regularized least squares problem

\[
\hat{f}_N = \arg\min_{f_N \in V_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\vec{x}_i))^2 + \lambda \| \nabla f_N \|_{L_2}^2 \right)
\]

with \(\| g \|_{L_2}^2 := \int g^2 \, d\vec{x} \)
Example 1 – Ripley Data Set

- Artificial, 2d data set, frequently used as a benchmark (mixture of Gaussian distributions plus noise)
- 250 points for training, 1000 to test on
- Constructed to contain 8% of noise
Ripley Data Set Using Sparse Grids

- Compute adaptive sparse grid classifier, e.g.:

Best accuracy: 91.5% on test data (max. 92%)
Suitable treatment of boundary needed
From Minimization to System of Linear Equations

- Leads to N linear equations for N unknowns

$$\left(\frac{1}{m} BB^T + \lambda C \right) \vec{v} = \frac{1}{m} B \vec{y},$$

- With matrices C and B

$$(C)_{ij} = \langle \nabla \phi_i(\vec{x}), \nabla \phi_j(\vec{x}) \rangle_{L^2}, \quad (B)_{ij} = \phi_i(\vec{x}_j)$$

Now: use Sparse Grids!

- How do the matrices B and C look like?
- Should we explicitly set up B and C or is there a better solution?
- In 1D: C is a **diagonal matrix**! (However: B is complicated)
- In general: is there a level-wise hierarchical/recursive algorithm?
Towards a Hierarchical/Recursive Algorithm

- Consider right-hand side $\frac{1}{m} B\vec{y}$:

$$ (B\vec{y})_i = \sum_j B_{ij}y_j = \sum_j \phi_i(x_j)y_j $$

- Consider a nodal basis $\phi_i(x_j) = \delta_{ij}$, then $B = I$ and $(B\vec{y})_i = y_i$

Hierarchical transform when using hierarchical basis $\psi_i(x)$?

Approach:

- Consider vectors of basis functions $\vec{\psi} = (\psi_i)_i$ and $\vec{\phi} = (\phi)_i$
- Show that then $\psi = H\phi$ (matrix-vector product)
- Then: $\sum_j \psi_i(x_j)y_j = \sum_j (H\phi)_i(x_j)y_j = (HB\vec{y})_i$
- As $(B\vec{y})_i = y_i$ for nodal basis: $\sum_j \psi_i(x_j)y_j = (H\vec{y})_i$
- Now: how does H look like and how do we compute $H\vec{y}$?
Hierarchical Transform on Basis Functions

- represent hat functions $\phi_{n-1,i}(x)$ via fine-level functions $\phi_{n,j}(x)$

$$\phi_{n-1,i}(x) = \frac{1}{2} \phi_{n,2i-1}(x) + \phi_{n,2i}(x) + \frac{1}{2} \phi_{n,2i+1}(x)$$

- hierarchical-basis transformation as matrix-vector product:

$$\begin{pmatrix} \psi_{n,i-1}(x) \\ \psi_{n,i}(x) \\ \psi_{n,i+1}(x) \end{pmatrix} := \begin{pmatrix} \phi_{n,2i-1}(x) \\ \phi_{n-1,i}(x) \\ \phi_{n,2i+1}(x) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \phi_{n,2i-1}(x) \\ \phi_{n,2i}(x) \\ \phi_{n,2i+1}(x) \end{pmatrix}$$
Hierarchical Basis Transformation (2)

- hierarchical basis transformation: \(\psi_{n,i}(x) = \sum_j H_{i,j} \phi_{n,j}(x) \)
- written as matrix-vector product: \(\vec{\psi}_n = H_n \vec{\phi}_n \)
- \(H \) can be written as a sequence of level-wise transforms:
 \[H_n = H_n^{(1)} H_n^{(2)} \ldots H_n^{(n-2)} H_n^{(n-1)} \]
- where each transform has a shape similar to
 \[
 H_3^{(2)} = \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1/2 & 1 & 1/2 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1/2 & 1 & 1/2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1/2 & 1 & 1/2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 \end{pmatrix}
 \]
- important: can be implemented in linear complexity!
Classification with Sparse Grids

Notes on Implementation

- In higher dimensions: nodal basis leads to simple matrix structures, but the systems of equations are difficult to solve → **most important:** curse of dimensionality kicks in

- Hierarchical basis leads to system of equations that can be solved efficiently;
 → complicated matrix structures,
 → algorithms based on hierarchization/dehierarchization

- **Sparse grids:** implementation is not just a hierarchization of node basis curse of dimensionality!)
 → complicated hierarchical, recursive algorithms