Algorithms of Scientific Computing
Hierarchical Methods and Sparse Grids
– Archimedes’ Quadrature, One-Dimensional –

Michael Bader

Technische Universität München

Summer Term 2015
Why Numerical Quadrature?

- Integration integral part in many applications, e.g.:
 - Determine volumes (e.g. of beer/wine barrels)
 - Option pricing (expectation values)
 - Defuzzification for fuzzy controller
 - Optimization
 - Radiosity (accumulating light)
 - Discretization: Finite Volume/Finite Elements

- Often no analytical solution available

⇒ Approximate solution: “numerical quadrature”
 - Typical approach: approximate/interpolate, then integrate

- Core-problem: representation of functions in several variables
 - In higher-dimensional settings only stochastic or hierarchical methods available
 - Here: focus on hierarchical methods
Approximations for the definite integral

\[F_1(f, a, b) := \int_a^b f(x) \, dx \]

for \(f : [a, b] \rightarrow \mathbb{R} \)

- First example for a hierarchical method
- We first consider classical methods
- Then hierarchical approach
- Assumption in the following: “\(f \) is sufficiently smooth” (i.e., all necessary derivatives of \(f \) exist and are continuous)
Trapezoidal Rule, Simpson Rule

Classical methods for numerical quadrature: Newton-Cotes formulas

- \(f(x_i) \) at equally spaced points \(x_i = a + ih \)
- Integrate
 \[
 \int_a^b f(x) \approx \sum w_i f(x_i)
 \]
- choose weights \(w_i \) such that integration is exact for polynomials up to a certain degree
- typically result from an interpolation problem
Trapezoidal rule

- Interpolate at interval boundaries with linear function

\[F_1 \approx T := (b - a) \frac{f(a) + f(b)}{2} \]

Simpson rule

- Interpolate at interval boundaries and midpoint with quadratic function

\[F_1 \approx S := (b - a) \frac{f(a) + 4f \left(\frac{a+b}{2} \right) + f(b)}{6} \]
Quadrature Error

- Error terms are known for the two methods:
 \[|T - F_1| \leq \frac{M_2}{12} (b - a)^3 \]
 \[|S - F_1| \leq \frac{M_4}{2880} (b - a)^5 \]

- \(M_2 \) and \(M_4 \) are bounds for the second, resp. fourth, derivative:
 \[
 M_2 := \sup_{x \in [a,b]} |f''(x)|, \\
 M_4 := \sup_{x \in [a,b]} |f^{(4)}(x)|.
 \]
Composite Quadrature Rules

- Error bounds suggest the following improvement:
 - Split interval \([a, b]\) into smaller subintervals
 - Apply simple quadrature rule in each of them
- Simplest case: take uniform grid with \(n\) intervals and mesh-width \(h = (b - a)/n\)
- Composite trapezoidal rule

\[
CT := h \cdot \left[\frac{f(a)}{2} + \sum_{i=1}^{n-1} f(a + ih) + \frac{f(b)}{2} \right]
\]

- Composite Simpson’s rule

\[
CS := \frac{h}{6} \left[f(a) + 4f \left(a + \frac{h}{2} \right) + 2f(a + h) + 4f \left(a + \frac{3h}{2} \right)
+ \ldots + 4f \left(b - \frac{h}{2} \right) + f(b) \right]
\]
Composite Quadrature Rules – Error

- To measure the error: sum up $n = (b - a)/h$ terms (one for each interval)
- Terms are in $O(h^3)$ and $O(h^5)$ resp.

\[
|CT - F_1| \leq \frac{M_2}{12} (b - a) \cdot h^2,
\]

\[
|CS - F_1| \leq \frac{M_4}{2880} (b - a) \cdot h^4.
\]

- Accuracy increases with n
- Doubling the computational effort ($h \mapsto h/2$) reduces error bound to $1/4$ (CT) and $1/16$ (CS), if f is sufficiently smooth
Typical non-hierarchical methods

- Summands have (more or less) same weight
- To store: use array
- To implement: use for-loop
- To increase accuracy: discard old result, start all over once again
Archimedes’ Hierarchical Approach
(to compute the area under a parabola)

We now decompose the area F_1 in a hierarchical manner:

- Start with trapezoid as for trapezoidal rule:
 \[
 T_1(f, a, b) = \frac{b - a}{2} (f(a) + f(b)).
 \]

- Let remaining error term (area between trapezoid and curve) be S_1:
 \[
 F_1(f, a, b) = T_1(f, a, b) + S_1(f, a, b).
 \]

- Hierarchical approach if current approximation too inaccurate:
 - Take trapezoid (intermediate solution)
 - Add approximation for S_1
Decomposition of Remainder S_1

- Decompose remainder S_1 into triangle D_1 with (projected) base $(b - a)$ and height

$$f \left(\frac{a + b}{2} \right) - \frac{f(a) + f(b)}{2}$$

- We obtain two remainders of similar type

$$S_1(f, a, b) = D_1(f, a, b) + S_1(f, a, \frac{a + b}{2}) + S_1(f, \frac{a + b}{2}, b)$$

- Both are typically much smaller!
Recursive Computation of F_1

- Interprete formulas for F_1 (area below curve), T_1 (trapezoid), S_1 (remainder) as function definitions

⇒ Obtain recursive method to compute F_1

Stopping criterion

- Note: recursion does not terminate so far
- As we’re only interested in approximation: implement termination criterion in function S_1, for example
 - Count recursion depth ($t = 0$ for whole interval $[a, b]$, $t = 1$ for the first two subintervals, ...)
 - Stop recursion for certain $t = l$
 - Then we exactly compute the composite trapezoidal quadrature for $n = 2^l$
 - Alternatively, we could have used $b - a \leq h$ for some $h = 2^{-l}$ as stopping criterion
Adaptive Stopping Criterion

- Intuitive assumption (look at drawings): triangle D_1 comprises most of S_1
- Later, we’ll see that D_1 covers $3/4$ of the area of S_1 for sufficiently smooth functions and asymptotically for small h
- We can hope (but not be sure!):
 - Error for the computation of S_1 is about $D_1/3$ when stopping the recursion
- Hierarchical approach provides a stopping criterion for free
 ⇒ We can control the error of the quadrature!
- Even better:
 - Take height of triangle ($hierarchical surplus$) instead of area
 - Stop if smaller than some ϵ
 ⇒ We can even hope to bound global error (w.r.t. F_1) by $\epsilon(b - a)$
Some Remarks

- For polynomials f of degree 2, we can compute (exactly)
 $$D_1 = \frac{3}{4} S_1.$$

- When stopping the recursion, we can take $4/3 \cdot D_1$ rather than D_1.

 ⇒ We obtain the integrand exactly.

- In total, we just compute the composite Simpson’s rule.

- Currently, we have to evaluate f three times to compute the hierarchical surplus.

- When calling function S_1, we have already computed f at the interval boundaries.

 ⇒ Extend $S(f, a, b)$ to $S(f, a, b, f(a), f(b))$ at no extra cost.