Fundamental Algorithms 3

Exercise 1

Try the Recursion Tree Method (compare lecture) for the following recurrence:

\[T(n) = T(n/3) + T(2n/3) + O(n) \]

Show that the height of the recursion tree is in \(O(\log(n)) \).

- We assume that all occurring \(n \) are multiples of 3. Further, let \(c \) be the constant in the \(O(n) \) term. We then obtain the recursion tree

```
  cn
  /  \
c(n/3)      c(2n/3)
 /     \
 c(n/9)   c(2n/9)  c(2n/9)   c(4n/9)
```

On each level, we obviously obtain \(cn \) operations, independent of the level.

- The longest path in the recursion tree is the rightmost path with problem size \(n \rightarrow 2/3n \rightarrow (2/3)^2n \rightarrow \cdots \rightarrow 1 \) until we stop at problem size 1. The height \(h \) of the tree can be determined via the equation \((2/3)^h n = 1 \), leading to \(h = \log_{3/2} n \).

We could expect the total cost to be \(O(cn \log_{3/2} n) = O(n \log n) \).

What could be a flaw using the recursion tree method for such unbalanced trees? Show that \(T(n) \in O(n \log(n)) \), anyway, by using the substitution method.
• Problem: If the tree was a complete binary tree, we would have $2^{\log_{3/2} n} = n^{\log_{3/2} 2}$ leaves. Assuming constant effort c for $T(1)$, on the last level the costs would sum up to $\Theta(cn^{\log_{3/2} 2})$. Thus, on that level, the cost would be $\omega(n \log n)$ – and not $cn!$

Of course, the tree thins out starting at level $1 + \log_3 n$, thus we would have to count the exact cost on the subsequent levels.

• We simplify and assume that the total cost are $O(n \log n)$ and use the substitution method to verify this:

Assuming that $T(n) \leq an \log n$ for a suitable constant a, we obtain

$$T(n) \leq T(n/3) + T(2n/3) + cn$$
$$\leq a(n/3) \log(n/3) + a(2n/3) \log(2n/3) + cn$$
$$= a3n/3 \log n - a ((n/3) \log 3 + (2n/3) \log(3/2)) + cn$$
$$= an \log n - an (\log 3 - 2/3 \log 2) + cn$$
$$\leq an \log n$$

for $d \geq c / (\log 3 - 2/3 \log 2)$.

Exercise 2

Consider a partitioning algorithm that, in the worst case, will partition an array of m elements into two partitions of size $\lfloor \epsilon m \rfloor$ and $\lceil (1 - \epsilon)m \rceil$, where ϵ is fixed, and $0 < \epsilon < 1$. Show that a quicksort algorithm based on this partitioning has a worst-case complexity of $O(n \log n)$.

Solution:

Again, we will only count comparisons between array elements.

Using that the partitioning step will require at most n comparisons, we get the following recurrence for the necessary number $C(n)$ of comparisons:

$$C(1) = 0$$
$$C(n) = C(\epsilon n) + C((1 - \epsilon)n) + n$$

We guess $C(n) := an \log_2 n + b$ as the solution, and try to find constants a and b such that the recurrence is satisfied:

case $n = 1$:

$$C(1) = a \cdot 1 \cdot \log_2 1 + b = 0 \quad \Leftrightarrow b = 0,$$

hence, $C(n) = an \log_2 n$. 2
case $n > 1$: We insert our guess into the recurrence:

\[
an \log_2 n = C(n) = C(\epsilon n) + C((1 - \epsilon) n) + n
\]

\[
\Leftrightarrow \quad an \log_2 n = aen \log_2 (\epsilon n) + a(1 - \epsilon) n \log_2 ((1 - \epsilon) n) + n
\]

\[
\Leftrightarrow \quad an \log_2 n = aen (\log_2 \epsilon + \log_2 n) + a(1 - \epsilon) n (\log_2 (1 - \epsilon) + \log_2 n) + n
\]

\[
\Leftrightarrow \quad an \log_2 n = aen \log_2 \epsilon + aen \log_2 n +
\]

\[
\quad a(1 - \epsilon) n \log_2 (1 - \epsilon) + a(1 - \epsilon) n \log_2 n + n
\]

\[
\Leftrightarrow \quad 0 = aen \log_2 \epsilon + an \log_2 (1 - \epsilon) - aen \log_2 (1 - \epsilon) + an \log_2 n - aen \log_2 n + n
\]

\[
\Leftrightarrow \quad 0 = an (\epsilon \log_2 \epsilon + (1 - \epsilon) \log_2 (1 - \epsilon)) + n
\]

\[
\Leftrightarrow \quad a = \frac{-1}{\epsilon \log_2 \epsilon + (1 - \epsilon) \log_2 (1 - \epsilon)}
\]

Thus, the recurrence is satisfied if

\[
C(n) = \frac{-n \log_2 n}{\epsilon \log_2 \epsilon + (1 - \epsilon) \log_2 (1 - \epsilon)}
\]

Note that the constant a will be very large for values of ϵ that are close to either 0 or 1. Thus, even very bad partitions will not destroy the $O(n \log n)$ complexity, provided that the respective partition sizes are bounded by ϵn and $(1 - \epsilon) n$. However, bad partitions will still lead to slow algorithms due to the large constant factor involved.