Fundamental Algorithms

Chapter 2: Sorting

Michael Bader

Winter 2013/14
Part I

Simple Sorts
The Sorting Problem

Definition

Sorting is required to order a given sequence of elements, or more precisely:

Input: a sequence of \(n\) elements \(a_1, a_2, \ldots, a_n\)

Output: a permutation (reordering) \(a_1', a_2', \ldots, a_n'\) of the input sequence, such that \(a_1' \leq a_2' \leq \cdots \leq a_n'\).

- we will assume the elements \(a_1, a_2, \ldots, a_n\) to be integers (or any element/data type on which a total order \(\leq\) is defined)
- a sorting algorithm may output the permuted data or also the permuted set of indices
Insertion Sort

Idea: sorting by inserting

- successively generate ordered sequences of the first j numbers: $j = 1, j = 2, \ldots, j = n$
- in each step, $j \rightarrow j + 1$, one additional integer has to be inserted into an already ordered ordered sequence

Data Structures:

- numbers are sorted in place: output sequence will be stored in A itself (hence, content of A is changed)
Insertion Sort – Implementation

InsertionSort(A: Array[1..n]) {

 for j from 2 to n {
 // insert A[j] into sequence A[1..j−1]
 key := A[j];

 i := j−1; // initialize i for while loop
 while i>=1 and A[i]>key {
 A[i+1] := A[i];
 i := i−1;
 }
 A[i+1] := key;
 }
}
Correctness of InsertionSort

Loop invariant:
Before each iteration of the for-loop, the subarray A[1..j-1] consists of all elements originally in A[1..j-1], but in sorted order.

Initialization:
- loops starts with j=2; hence, A[1..j-1] consists of the element A[1] only
- A[1] contains only one element, A[1], and is therefore sorted.
Correctness of InsertionSort

Loop invariant:

Before each iteration of the for-loop, the subarray \(A[1..j-1]\) consists of all elements originally in \(A[1..j-1]\), but in sorted order.

Maintenance:

- assume that the while loop works correctly (or prove this using an additional loop invariant):
 - after the while loop, \(i\) contains the largest index for which \(A[i]\) is smaller than the key
 - \(A[i+2..j]\) contains the (sorted) elements previously stored in \(A[i+1..j-1]\); also: \(A[i+1]\) and all elements in \(A[i+2..j]\) are \(\geq\) key
 - the key value, \(A[j]\), is thus correctly inserted as element \(A[i+1]\) (overwrites the duplicate value \(A[i+1]\))
 - after execution of the loop body, \(A[1..j]\) is sorted
 - thus, before the next iteration \((j:=j+1)\), \(A[1..j-1]\) is sorted
Correctness of InsertionSort

Loop invariant:
Before each iteration of the for-loop, the subarray A[1..j-1] consists of all elements originally in A[1..j-1], but in sorted order.

Termination:
- The for-loop terminates when j exceeds n (i.e., j=n+1)
- Thus, at termination, A[1 .. (n+1)-1] = A[1..n] is sorted and contains all original elements
Insertion Sort – Number of Comparisons

InsertionSort(A: Array[1..n]) {
 for j from 2 to n {
 key := A[j];
 i := j - 1;
 while i >= 1 and A[i] > key {
 A[i+1] := A[i];
 i := i - 1;
 }
 A[i+1] := key;
 }
}

n-1 iterations

t_j iterations
→ t_j comparisons
A[i] > key

⇒ \sum_{j=2}^{n} t_j comparisons
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis

- what is “best case”?
- what “worst case”?
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis of the “best case”:
- in the best case, \(t_j = 1 \) for all \(j \)
- happens only, if \(A[1..n] \) is already sorted

\[
\Rightarrow T_{IS}(n) = \sum_{j=2}^{n} 1 = n - 1 \in \Theta(n)
\]
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis of the “worst case”:
- in the worst case, \(t_j = j - 1 \) for all \(j \)
- happens, if \(A[1..n] \) is already sorted in opposite order

\[T_{IS}(n) = \sum_{j=2}^{n} (j - 1) = \frac{1}{2} n(n - 1) \in \Theta(n^2) \]
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis of the “average case”:
- best case analysis: \(T_{IS}(n) \in \Theta(n) \)
- worst case analysis: \(T_{IS}(n) \in \Theta(n^2) \)

\(\Rightarrow \) What will be the ”typical” (average, expected) case?
Running Time and Complexity

“Run(ning)Time”

- the notation $T(n)$ suggest a “time”, such as run(ning) time of an algorithm, which depends on the input (size) n
- in practice: we need a precise model how long each operation of our programmes takes → very difficult on real hardware!
- we will therefore determine the number of operations that determine the run time, such as:
 - number of comparisons (sorting, e.g.)
 - number of arithmetic operations (Fibonacci, e.g.)
 - number of memory accesses

“Complexity”

- characterises how the run time depends on the input (size), typically expressed in terms of the Θ-notation
- “algorithm xyz has linear complexity” → run time is $\Theta(n)$
Average Case Complexity

Definition (expected running time)

Let $X(n)$ be the set of all possible input sequences of length n, and let $P: X(n) \rightarrow [0, 1]$ be a probability function such that $P(x)$ is the probability that the input sequence is x.

Then, we define

$$
\bar{T}(n) = \sum_{x \in X(n)} P(x) T(x)
$$

as the expected running time of the algorithm.

Comments:

- we require an exact probability distribution (for InsertionSort, we could assume that all possible sequences have the same probability)
- we need to be able to determine $T(x)$ for any sequence x (much too laborious to determine)
Average Case Complexity (2)

Heuristic estimate:

- we assume that we need $\frac{j}{2}$ steps in every iteration:

$$\Rightarrow \overline{T}_{IS}(n) \approx \sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \sum_{j=2}^{n} j \in \Theta(n^2)$$

- note: $\frac{j}{2}$ isn’t even an integer...

- Just considering the number of comparisons of the “average case” can lead to quite wrong results!

in general $E(T(n)) \neq T(“E(n)”)$
Bubble Sort

BubbleSort(A: Array[1..n]) {
 for i from 1 to n do {
 for j from n downto i+1 do {
 }
 }
}

Basic ideas:

- compare neighboring elements only
- exchange values if they are not in sorted order
- repeat until array is sorted (here: pessimistic loop choice)
Bubble Sort – Homework

Prove correctness of Bubble Sort:
• find invariant for i-loop
• find invariant for j-loop

Number of comparisons in Bubble Sort:
• best/worst/average case?
Part II

Mergesort and Quicksort
Mergesort

Basic Idea: divide and conquer

- **Divide** the problem into two (or more) subproblems:
 → split the array into two arrays of equal size
- **Conquer** the subproblems by solving them recursively:
 → sort both arrays using the sorting algorithm
- **Combine** the solutions of the subproblems:
 → merge the two sorted arrays to produce the entire sorted array
Combining Two Sorted Arrays: Merge

Merge \(L: \text{Array}[1..p], R: \text{Array}[1..q], A: \text{Array}[1..n] \) {
\[
\text{// merge the sorted arrays L and R into A (sorted)} \\
\text{// we presume that } n=p+q \\
i :=1; j :=1; \\
\text{for } k \text{ from 1 to } n \text{ do } \{ \\
\quad \text{if } i > p \\
\quad \quad \text{then } \{ A[k]:=R[j]; j=j+1; \} \\
\quad \text{else if } j > q \\
\quad \quad \text{then } \{ A[k]:=L[i]; i := i+1; \} \\
\quad \text{else if } L[i] < R[j] \\
\quad \quad \text{then } \{ A[k]:=L[i]; i := i+1; \} \\
\quad \text{else } \{ A[k]:=R[j]; j := j+1; \} \\
\}\}
\]
Correctness and Run Time of Merge

Loop invariant:
Before each cycle of the for loop:
- A contains the k-1 smallest elements of L and R combined;
- L[i] and R[j] are the smallest elements of L and R that have not been copied to A yet
 (L[1..i-1] and R[1..j-1] have been merged to A)

Run time:

\[T_{\text{Merge}}(n) \in \Theta(n) \]

- for loop will be executed exactly \(n \) times
- each loop contains constant number of commands:
 - exactly 1 copy statement
 - exactly 1 increment statement
 - 1–3 comparisons
MergeSort(A:Array[1..n]) {
 if n > 1 then {
 m := floor (n/2);
 create array L [1... m];
 for i from 1 to m do { L[i] := A[i]; }

 create array R [1... n−m];
 for i from 1 to n−m do { R[i] := A[m+i]; }

 MergeSort(L);
 MergeSort(R);

 Merge(L,R,A);
 }
}
Number of Comparisons in MergeSort

- Merge performs $c \cdot n$ comparisons on n elements
- MergeSort itself does not contain any comparisons between elements; all comparisons done in Merge

⇒ number of comparisons for the entire MergeSort algorithms can be specified by a recurrence:

$$T_{MS}(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
T_{MS}\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T_{MS}\left(n - \left\lfloor \frac{n}{2} \right\rfloor \right) + cn & \text{if } n \geq 2
\end{cases}$$
Number of Comparisons in MergeSort (2)

Assume $n = 2^k$, c constant:

$$T_{\text{MS}}(2^k) \leq T_{\text{MS}}(2^{k-1}) + T_{\text{MS}}(2^{k-1}) + c \cdot 2^k$$

$$\leq 2T_{\text{MS}}(2^{k-1}) + 2^k c$$

$$\leq 2^2 T_{\text{MS}}(2^{k-2}) + 2 \cdot 2^{k-1} c + 2^k c$$

$$\leq \ldots$$

$$\leq 2^k T_{\text{MS}}(2^0) + 2^{k-1} \cdot 2^1 c + \ldots + 2^j \cdot 2^{k-j} c$$

$$\quad + \ldots + 2 \cdot 2^{k-1} c + 2^k c$$

$$\leq \sum_{j=1}^{k} 2^k c = ck \cdot 2^k = cn \log_2 n \in O(n \log n)$$
Quicksort

Basic Idea: divide and conquer

- **Divide** the input array $A[p..r]$ into parts $A[p..q]$ and $A[q+1..r]$, such that every element in $A[q+1..r]$ is larger than all elements in $A[p..q]$.
- **Conquer**: sort the two arrays $A[p..q]$ and $A[q+1..r]$
- **Combine**: if the divide and conquer steps are performed in place, then no further combination step is required.

Partitioning using a pivot element:

- all elements that are smaller than the pivot element should go into the “smaller” partition ($A[p..q]$)
- all elements that are larger than the pivot element should go into the “larger” partition ($A[q+1..r]$)
Partitioning the Array (Hoare’s Algorithm)

```
Partition (A:Array[p..r]) : Integer {
    // x is the pivot (chosen as first element):
    x := A[p];
    // partitions grow towards each other
    i := p; j := r; // (partition boundaries)
    while true do { // i<j: partitions haven’t met yet
        // leave large elements in right partition
        while A[j]>x do { j:=j−1; };
        // leave small elements in left partition
        while A[i]<x do { i:=i+1; };
        // swap the two first ”wrong” elements
        if i < j then {
            exchange A[i] and A[j ];
            i:=i+1; j:=j−1;
        } else return j ;
    }
}
```
Time Complexity of Partition

How many statements are executed by the nested while loops?

- monitor increments/decrements of i and j
- after \(n := r - p \) increments/decrements, i and j have the same value
 \[\Rightarrow \Theta(n) \text{ comparisons with the pivot} \]
 \[\Rightarrow O(n) \text{ element exchanges} \]

Hence: \(T_{\text{Part}}(n) \in \Theta(n) \)
Implementation of QuickSort

QuickSort (A: Array[p..r])
{
 if p >= r then return;
 // only proceed, if A has at least 2 elements:
 q := Partition (A);
 QuickSort (A[p..q]);
 QuickSort (A[q+1..r]);
}

Homework:

- prove correctness of Partition
- prove correctness of QuickSort
Time Complexity of QuickSort

Best Case:
- assume that all partitions are split exactly into two halves:

\[
T_{QS}^{\text{best}}(n) = 2T_{QS}^{\text{best}}\left(\frac{n}{2}\right) + \Theta(n)
\]

- analogous to MergeSort:

\[
T_{QS}^{\text{best}}(n) \in \Theta(n \log n)
\]

Worst Case:
- Partition will always produce one partition with only 1 element:

\[
T_{QS}^{\text{worst}}(n) = T_{QS}^{\text{worst}}(n - 1) + T_{QS}^{\text{worst}}(1) + \Theta(n)
\]

\[
= T_{QS}^{\text{worst}}(n - 1) + \Theta(n) = T_{QS}^{\text{worst}}(n - 2) + \Theta(n - 1) + \Theta(n)
\]

\[
= \ldots = \Theta(1) + \ldots + \Theta(n - 1) + \Theta(n) \in \Theta(n^2)
\]
Time Complexity of QuickSort – Special Cases?

What happens if:

• A is already sorted?
 → partition sizes always 1 and n-1 ⇒ Θ(n²)

• A is sorted in reverse order?
 → partition sizes always 1 and n-1 ⇒ Θ(n²)

• one partition has always at most a elements (for a fixed a)?
 → same complexity as a = 1 ⇒ Θ(n²)

• partition sizes are always n(1 – a) and na with 0 < a < 1?
 → same complexity as best case ⇒ Θ(n log n)

Questions:

• What happens in the “usual” case?
• Can we force the best case?
Randomized QuickSort

RandPartition (A: Array [p..r]): Integer {
 // choose random integer i between p and r
 i := rand(p,r);
 // make A[i] the (new) Pivot element:
 exchange A[i] and A[p];
 // call Partition with new pivot element
 q := Partition (A);
 return q;
}

RandQuickSort (A:Array [p..r]) {
 if p >= r then return;
 q := RandPartition(A);
 RandQuickSort (A[p...q]);
 RandQuickSort (A[q+1 ..r]);
}
Time Complexity of RandQuickSort

Best/Worst-case complexity?

- RandQuickSort may still produce the worst (or best) partition in each step
- worst case: $\Theta(n^2)$
- best case: $\Theta(n \log n)$

However:

- it is not determined which input sequence (sorted order, reverse order) will lead to worst case behavior (or best case behavior);
- any input sequence might lead to the worst case or the best case, depending on the random choice of pivot elements.

Thus: only the **average-case complexity** is of interest!
Average Case Complexity of RandQuickSort

Assumptions:

• we compute $\bar{T}_{RQS}(A)$, i.e., the expected run time of RandQuickSort for a given input A
• $\text{rand}(p,r)$ will return uniformly distributed random numbers (all pivot elements have the same probability)
• all elements of A have different size: $A[i] \neq A[j]$

Basic Idea:

• let k be the number of elements that are smaller than the randomly chosen pivot element ($\Rightarrow 0 \leq k < n$)
• for $0 < k < n$, the partition sizes will be k and $n - k$
• for $k = 0$, the partition sizes will be 1 and $n - 1$
• the probability of $k = 0, \ldots, n - 1$ is always $\frac{1}{n}$.
Average Case Complexity of RandQuickSort (2)

The expected runtime of RandQuickSort is

\[\bar{T}_{\text{RQS}}(n) = \sum_{j=0}^{n-1} P(k = j) T_{\text{RQS}}(n|k=j) \]

\[= \frac{1}{n} \left((T_{\text{RQS}}(1) + T_{\text{RQS}}(n - 1)) + \sum_{j=1}^{n-1} (T_{\text{RQS}}(j) + T_{\text{RQS}}(n - j)) \right) + \Theta(n) \]

- Note: all \(T_{\text{RQS}}(j) \) depend on the choice of the next pivot elements
- simplifying assumption: \(T_{\text{RQS}}(j) = \bar{T}_{\text{RQS}}(j) \)
Average Case Complexity of RandQuickSort (3)

As $\bar{T}_{\text{RQS}}(1) \in \Theta(1)$ and $\bar{T}_{\text{RQS}}(n - 1) \in \Theta(n^2)$ (worst case analysis):

$$\frac{1}{n} \left(T_{\text{RQS}}(1) + T_{\text{RQS}}(n - 1) \right) \in O(n)$$

Thus

$$\bar{T}_{\text{RQS}}(n) = \frac{1}{n} \left(\sum_{j=1}^{n-1} \left(\bar{T}_{\text{RQS}}(j) + \bar{T}_{\text{RQS}}(n - j) \right) \right) + \Theta(n)$$

$$= \frac{2}{n} \sum_{j=1}^{n-1} \bar{T}_{\text{RQS}}(j) + \Theta(n)$$

Solve recurrence equation to obtain:

$$\bar{T}_{\text{RQS}} \in \Theta(n \log n)$$
Part III

Outlook: Optimality of Comparison Sorts
Are Mergesort and Quicksort optimal?

Definition

Comparison sorts are sorting algorithms that use only comparisons (i.e. tests as $\leq, =, >, \ldots$) to determine the relative order of the elements.

Examples:

- InsertSort, BubbleSort
- MergeSort, (Randomised) Quicksort

Question:

Is $T(n) \in \Theta(n \log n)$ the best we can get (in the worst/average case)?
Decision Trees

Definition

A decision tree is a binary tree in which each internal node is annotated by a comparison of two elements. The leaves of the decision tree are annotated by the respective permutations that will put an input sequence into sorted order.

```
Decision Tree:

a_1 \leq a_2

true
a_2 \leq a_3
true
\langle a_1, a_2, a_3 \rangle
false
\langle a_1, a_3, a_2 \rangle
false
\langle a_2, a_3, a_1 \rangle
false
\langle a_3, a_2, a_1 \rangle
false
\langle a_1 \leq a_3 \rangle
false
\langle a_2 \leq a_3 \rangle
true
\langle a_1, a_3, a_2 \rangle
false
\langle a_3, a_1, a_2 \rangle
true
\langle a_2, a_3, a_1 \rangle
false
\langle a_3, a_2, a_1 \rangle
```
Decision Trees – Properties

Each comparison sort can be represented by a decision tree:

- a path through the tree represents a sequence of comparisons
- sequence of comparisons depends on results of comparisons
- can be pretty complicated for Mergesort, Quicksort, …

A decision tree can be used as a comparison sort:

- if every possible permutation is annotated to at least one leaf of the tree!
- if (as a result) the decision tree has at least n! (distinct) leaves.
A Lower Complexity Bound for Comparison Sorts

- A binary tree of height h (h the length of the longest path) has at most 2^h leaves.
- To sort n elements, the decision tree needs $n!$ leaves.

Theorem

Any decision tree that sorts n elements has height $\Omega(n \log n)$.

Proof:

- h comparisons in the worst case are equivalent to a decision tree of height h
- with h comparisons, we can sort n elements (at best), if

 $$n! \leq 2^h \iff h \geq \log(n!) \in \Omega(n \log n)$$

- because:

 $$h \geq \log(n!) \geq \log \left(n^{n/2} \right) = \frac{n}{2} \log n$$
Optimality of Mergesort and Quicksort

Corollaries:

- MergeSort is an optimal comparison sort in the worst/average case
- QuickSort is an optimal comparison sort in the average case

Consequences and Alternatives:

- comparison sorts can be faster than MergeSort, but only by a constant factor
- comparison sorts cannot be asymptotically faster
- sorting algorithms might be faster, if they can exploit additional information on the size of elements
- examples: **BucketSort**, CountingSort, RadixSort
Bucket Sort

Basic Ideas and Assumptions:

- pre-sort numbers in buckets that contain all numbers within a certain interval
- hope (assume) that input elements are evenly distributed and thus uniformly distributed to buckets
- sort buckets and concatenate them

Requires “Buckets”:

- can hold arbitrary numbers of elements
- can insert elements efficiently: in $O(1)$ time
- can concatenate buckets efficiently: in $O(1)$ time
- remark: linked lists will do
Implementation of BucketSort

BucketSort (A: Array[1..n]) {

 Create Array B[0..n–1] of Buckets;
 // assume all Buckets B[i] are empty at first

 for i from 1 to n do {
 insert A[i] into Bucket B[floor(n * A[i])];
 }

 for i from 0 to n–1 do {
 sort Bucket B[i];
 }

 concatenate Buckets B[0], B[1], ..., B[n–1] into A
}
Number of Operations of BucketSort

Operations:
- \(n \) operations to distribute \(n \) elements to buckets
- plus effort to sort all buckets

Best Case:
- if each bucket gets 1 element, then \(\Theta(n) \) operations are required

Worst Case:
- if one bucket gets all elements, then \(T(n) \) is determined by the sorting algorithm for the buckets
Bucketsort – Average Case Analysis

- probability that bucket i contains k elements:

\[
P(n_i = k) = \binom{n}{k} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k}
\]

- expected mean and variance for such a distribution:

\[
E[n_i] = n \cdot \frac{1}{n} = 1
\]
\[
\text{Var}[n_i] = n \cdot \frac{1}{n} \left(1 - \frac{1}{n} \right) = \left(1 - \frac{1}{n} \right)
\]

- InsertionSort for buckets $\Rightarrow \leq cn^2 \in O(n_i^2)$ operations per bucket

- expected operations to sort one bucket:

\[
\bar{T}(n_i) \leq \sum_{k=0}^{n-1} P(n_i = k) \cdot ck^2 = cE[n_i^2]
\]
Bucket sort – Average Case Analysis (2)

- theorem from statistics:
 \[E[X^2] = E[X]^2 + \text{Var}(X) \]

- expected operations to sort one bucket:
 \[\bar{T}(n_i) \leq cE[n_i^2] = c \left(E[n_i]^2 + \text{Var}[n_i] \right) = c \left(1^2 + 1 - \frac{1}{n} \right) \in \Theta(1) \]

- expected operations to sort all buckets:
 \[\bar{T}(n) = \sum_{i=0}^{n-1} \bar{T}(n_i) \leq c \sum_{i=0}^{n-1} \left(2 - \frac{1}{n} \right) \in \Theta(n) \]

 (note: expected value of the sum is the sum of expected values)