Fundamental Algorithms

Chapter 3: Parallel Algorithms – The PRAM Model

Michael Bader
Winter 2013/14
A (Naive?) Parallel Example: AccumulateSort

AccumulateSort (A: Array[1..n]) {

Create Array P[1..n] of Integer;
// all P[i]=0 at start

for 1 <= i, j <= n and i<j do in parallel {
 if A[i] > A[j]
 then P[i] := P[i]+1
 else P[j] := P[j]+1;
}

for i from 1 to n do in parallel {
}
}
AccumulateSort – Discussion

Idea:

• do all \(\binom{n}{2} \) comparisons at once and in parallel
• use \(\binom{n}{2} \) processors
• count “wins” for each element to obtain its position
• complexity: \(T_{AS} = \Theta(1) \) on \(n(n-1)/2 \) processors

Assumptions:

• all read accesses to A can be done in parallel
• increments of P[i] and P[j] can be done in parallel
• second for-loop is executed after the first one (on all processors)
 (no overwrites due to sequential execution)
Example: Parallel Searching

Definition (Search Problem)

Input: a set A of n elements $\in A$, and an element $x \in A$.

Output: The (smallest) index $i \in \{1, \ldots, n\}$ with $x = A[i]$.

An immediate solution:

- use n processors
- on each processor: compare x with $A[i]$
- return matching index/indices i
Simple Parallel Searching

ParSearch (A: Array[1..n], x: Element) : Integer {
 for i from 1 to n do in parallel {
 if x = A[i] then return i;
 }
}

Discussion:

• Can all n processors access x simultaneously?
 → exclusive or concurrent read

• What happens if more than one processor finds an x?
 → exclusive or concurrent write (of multiple returns)
Towards Parallel Algorithms

First Problems and Questions:

• parallel read access to variables possible?
• parallel write access (or increments?) to variables possible?
• are parallel/global copy statements realistic?
• how do we synchronise parallel executions?

Reality vs. Theory:

• on real hardware: probably lots of restrictions (e.g., no parallel reads/writes; no global operations on or access to memory)
• in theory: if there were no such restrictions, how far can we get?
• or: for different kinds of restrictions, how far can we get?
The PRAM Models

Concurrent or Exclusive Read/Write Access:

- **EREW**: exclusive read, exclusive write
- **CREW**: concurrent read, exclusive write
- **ERCW**: exclusive read, concurrent write
- **CRCW**: concurrent read, concurrent write
Exclusive/Concurrent Read and Write Access

exclusive read

exclusive write

concurrent read

concurrent write
The PRAM Models (2)

SIMD

- Underlying principle for parallel hardware architecture: strict single instruction, multiple data (SIMD)
 ⇒ All parallel instructions of a parallelized loop are performed synchronously (applies even to simple if-statements)
Parallel Search on an EREW PRAM

Todos for exclusive read and exclusive write:

- avoid exclusive access to \(x \)
 \[\Rightarrow \] replicate \(x \) for all processors (“broadcast”)

- determine smallest index of all elements found:
 \[\Rightarrow \] determine minimum in parallel

Broadcast on the PRAM:

- copy \(x \) into all elements of an array \(X[1..n] \)

 - note: each processor can only produce one copy per step
Broadcast on the PRAM – Copy Scheme

5

5 5

5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5
Broadcast on the PRAM – Implementation

BroadcastPRAM(x:Element, A:Array[1..n]) {
 // n assumed to be 2^k
 // Model: EREW PRAM

 for i from 0 to k−1 do
 for j from 2^i+1 to 2^(i+1) do in parallel {
 }
}

Complexity:

- \(T(n) = \Theta(\log n) \) on \(\frac{n}{2} \) processors
Minimum Search on the PRAM – “Binary Fan-In”

4 7 3 9 5 6 10 8

4 3 5 8

3 5

3
Minimum on the PRAM – Implementation

MinimumPRAM(A: Array[1..n]) : Integer {
 // n assumed to be 2^k
 // Model: EREW PRAM

 for i from 1 to k do
 {
 for j from 1 to n/(2^i) do in parallel
 else
 end if;
 }
 return A[1];
}

Complexity: \(T(n) = \Theta(\log n) \) on \(\frac{n}{2} \) processors
“Binary Fan-In” (2)

Comment Concerned about synchronous if-statement (guaranteed by SIMD assumptions)?

⇒ Modify stride!
Searching on the PRAM – Parallel Implementation

SearchPRAM(A: Array[1..n], x: Element) : Integer {
 // n assumed to be 2^k
 // Model: EREW PRAM

 BroadcastPRAM(x, X[1..n]);

 for i from 1 to n do in parallel {
 if A[i] = X[i]
 then X[i] := i;
 else X[i] := n+1; // (invalid index)
 end if;
 }

 return MinimumPRAM(X[1..n]);
}
The Prefix Problem

Definition (Prefix Problem)

Input: an array A of n elements a_i.

Output: All terms $a_1 \times a_2 \times \cdots \times a_k$ for $k = 1, \ldots, n$.

\times may be any associative operation.

Straightforward serial implementation:

```plaintext
Prefix ( A: Array [1..n] ) {
    // in-place computation:
    for i from 2 to n do {
    }
}
```
The Prefix Problem – Divide and Conquer

Idea:

1. compute prefix problem for \(A_1, \ldots, A_{n/2}\)
 \(\rightarrow\) gives \(A_{1:1}, \ldots, A_{1:n/2}\)
2. compute prefix problem for \(A_{n/2+1}, \ldots, A_n\)
 \(\rightarrow\) gives \(A_{n/2+2, n/2+1}, \ldots, A_{n/2+1:n}\)
3. multiply \(A_{1:n/2}\) with all \(A_{n/2+1:n/2+1}, \ldots, A_{n/2+1:n}\)
 \(\rightarrow\) gives \(A_{1:n/2+1}, \ldots, A_{1:n}\)

Parallelism:

- steps 1 and 2 can be computed in parallel (divide)
- all multiplications in step 3 can be computed in parallel
- recursive extension leads to parallel prefix scheme
Parallel Prefix Scheme on a CREW PRAM
Parallel Prefix – CREW PRAM Implementation

PrefixPRAM(A: Array [1..n]) {
 // n assumed to be 2^k
 // Model: CREW PRAM (n/2 processors)

 for l from 0 to k−1 do
 for p from 2^l by 2^(l+1) to n do in parallel
 for j from 1 to 2^l do in parallel {
 }
 }

Comments:

• p- and j-loop together: n/2 multiplications per l-loop
• concurrent read access to A[p] in the innermost loop
Parallel Prefix Scheme on an EREW PRAM
Parallel Prefix – EREW PRAM Implementation

PrefixPRAM(A: Array[1..n]) {
 // n assumed to be 2^k
 // Model: EREW PRAM (n−1 processors)

 for l from 0 to k−1 do
 for j from 2^l+1 to n do in parallel {
 tmp[j] := A[j−2^l];
 }
}

Comment: