Fundamental Algorithms

Chapter 4: Parallel Sorting

Michael Bader

Winter 2013/14
Sequential MergeSort

MergeSort(A: Array[1..n]) {
 if n > 1 then {
 m := floor(n/2);
 create array L[1...m];
 for i from 1 to m do { L[i] := A[i]; }

 create array R[1...n-m];
 for i from 1 to n-m do { R[i] := A[m+i]; }

 MergeSort(L);
 MergeSort(R);

 Merge(L, R, A);
 }
}

(How) can we parallelise MergeSort?
MergeSort in Parallel?

MergeSortPar(A: Array[1..n]) {
 if n > 1 then {
 m := floor(n/2);

 do in parallel {
 create array L[1..m];
 for i from 1 to m do { L[i] := A[i]; } MergeSort(L);

 create array R[1..n-m];
 for i from 1 to n-m do { R[i] := A[m+i]; } MergeSort(R);
 };

 Merge(L,R,A);
 }
}
Parallel MergeSort

Idea:

- parallelise “divide-and-conquer”: recursive calls can be done in parallel
- use $p/2$ processors for each of the recursive calls (if p processors are available)

Merging in Parallel?

- can Merge be executed in parallel?
- by how many processors?
Can Merge be Parallelised?

Merge \((L: \text{Array}[1..p], R: \text{Array}[1..q], A: \text{Array}[1..n])\) {
// merge the sorted arrays \(L\) and \(R\) into \(A\) (sorted)
// we presume that \(n=p+q\)
\[
i := 1; \quad j := 1;
\]
for \(k\) from 1 to \(n\) do {
 if \(i > p\)
 then \{ \(A[k] := R[j]; \quad j := j + 1;\) \}
 else if \(j > q\)
 then \{ \(A[k] := L[i]; \quad i := i + 1;\) \}
 else if \(L[i] < R[j]\)
 then \{ \(A[k] := L[i]; \quad i := i + 1;\) \}
 else \{ \(A[k] := R[j]; \quad j := j + 1;\) \}
}

Problem: inherently sequential progress through arrays \(A, L, R\)
Odd-Even Merge

Ideas:

• start with a two sorted lists of length $n/2$:

 2 3 4 7 1 5 6 8

• consider elements with odd and even index:

 2 3 4 7 1 5 6 8

• sort odd- and even-indexed elements separately:

 1 3 2 5 4 7 6 8

Observations

• final sequence is nearly sorted (only pairwise exchange required)

• odd- and even-indexed elements can be processed in parallel
Correctness of the Final Exchange Step

Claim (after odd/even sort):

- exchanges of \(a_{2i}\) and \(a_{2i+1}\) are sufficient for sorting

\[
\begin{array}{cccccccc}
1 & 3 & 2 & 5 & 4 & 7 & 6 & 8
\end{array}
\]

Counting Argument: \(x\) an odd-indexed element: \(x = a_{2i+1}\)

- exactly \(i\) odd-indexed elements are smaller than \(x\) (sorted lists)
- \(d_l, d_r = \) number of odd-indexed elements < \(x\) in left/right half
 \[\Rightarrow i = d_l + d_r\]
- \(v_l, v_r = \) number of even-indexed elements < \(x\) in left/right half
- \(x\) in left half: \(v_l = d_l, v_r \in \{d_r, d_r - 1\}\)
- \(x\) in right half: \(v_l \in \{d_l, d_l - 1\}, v_r = d_r\)
- consequence: \(v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i - 1\}\)
Correctness of the Final Exchange Step (2)

Counting Argument:
- count even- and odd-indexed elements \(< x \) in both halves
- \(v_l + v_r \in \{ d_l + d_r, d_l + d_r - 1 \} = \{ i, i - 1 \} \)

Possible Scenarios:
- \(v_l + v_r = i \Rightarrow \) exactly \(i \) even elements \(< x \)
 \(\Rightarrow i \)-th even-indexed element \(a_{2i} < x \Rightarrow OK \)
- \(v_l + v_r = i - 1 \Rightarrow \) exactly \(i - 1 \) even elements \(< x \)
 therefore: \(a_{2(i-1)} < x \), but \(a_{2i} > x \Rightarrow exchange \)
- in both cases:
 \(a_{2(i+1)} > x \) (at most \(i \) even elements \(< x \)) \(\Rightarrow OK \)
 \(a_{2(i-1)} < x \) (at least \(i - 1 \) even elements \(< x \)) \(\Rightarrow OK \)

\(\Rightarrow \) only the left even-indexed neighbour of \(x \) can be out of place
OddEvenMerge – A First Try

OddEvenMerge_1 (A: Array[1..n]) {
 // merge the sorted arrays A[1..n/2] and A[n/2+1..n]
 // into A (sorted); n is a power of 2
 OddEvenSplit(A, Odd, Even);
 Sort(Odd); Sort(Even);
 OddEvenJoin(A, Odd, Even);

 for i from 1 to n/2−1 do {
 then exchange A[2i] and A[2i+1]
 }
}

M. Bader: Fundamental Algorithms
Chapter 4: Parallel Sorting, Winter 2013/14
OddEvenSplit and OddEvenJoin (in parallel!)

OddEvenSplit \((A:\text{Array}[1..n], \)
\(\text{Odd:}\text{Array}[1..n/2], \text{Even:}\text{Array}[1..n/2]) \) {
for \(i \) from 1 to \(n/2 \) do in parallel {
 Odd[\(i \)] := A[2i - 1];
 Even[\(i \)] := A[2i];
}
}

OddEvenJoin \((A:\text{Array}[1..n], \)
\(\text{Odd:}\text{Array}[1..n/2], \text{Even:}\text{Array}[1..n/2]) \) {
for \(i \) from 1 to \(n/2 \) do in parallel {
 A[2i - 1] := Odd[\(i \)];
 A[2i] := Even[\(i \)];
}
}
Towards a Better Implementation of OddEvenMerge

After OddEvenSplit:
- Odd consists of two halves that are already sorted
- Even consists of two halves that are already sorted
⇒ Odd and Even can be sorted using OddEvenMerge

OddEvenMerge in Parallel:
- OddEvenSplit and OddEvenJoin are already parallel
- calls to OddEvenMerge can be executed in parallel (recursive calls will again issues parallel calls)
- final exchange loop can be parallelised
Parallel OddEvenMerge

OddEvenMergePRAM (A: Array[1..n]) {
! add stopping criterion:
if n<=2 then { SortTwo(A); return; };

OddEvenSplit(A, Odd, Even);

do in parallel{ OddEvenMergePRAM(Odd);
OddEvenMergePRAM(Even); }

OddEvenJoin(A, Odd, Even);

for i from 1 to n/2−1 do in parallel {
then exchange A[2i] and A[2i+1]
}
}
Parallelism in OddEvenMerge

(on 4 processors)

(on 2 × 2 processors)

(on 4 × 1 processors)

(on 2 × 2 processors)

(on 4 processors)
OddEvenMergeSort (in Parallel)

OddEvenMergeSortPRAM(A: Array [1..n]) {
 ! EREW PRAM with n/2 processors
 ! n assumed to be 2^k
 if n >= 2 then {
 do in parallel {
 OddEvenMergeSortPRAM(A[1..n/2]);
 OddEvenMergeSortPRAM(A[n/2+1..n]);
 };
 OddEvenMergePRAM(A);
 }
}
Complexity of Odd-Even MergeSort

Complexity of OddEvenMerge:

- \Theta(\log n) subsequent steps
- each step executed on \(\frac{n}{2} \) processors
- total work: \(\Theta(n \log n) \)

Complexity of Odd-Even MergeSort:

- requires executions of OddEvenMerge on subarrays of lengths \(k = 2, 4, \ldots, n \)
- each OddEvenMerge step requires \(\Theta(\log k) \) steps
- number of subsequent steps:
 \[
 \log 2 + \log 4 + \cdots + \log n = \Theta((\log n)^2)
 \]
- total work: \(\Theta\left(n(\log n)^2\right) \)