Fundamental Algorithms 1

– Solution Examples –

Exercise 1

Prove (by induction over \(n \)) that \(\frac{1}{3}n^2 + 5n + 30 \in O(n^2) \) for all \(n \in \mathbb{N}^+ \).

Solution:
(Note: we wouldn’t have to prove by induction, but it’s a simple case to practice it.)

\[
f := \frac{1}{3}n^2 + 5n + 30 \in O(n^2) \iff \exists c > 0 \exists n_0 \forall n \geq n_0 : f(n) \leq cn^2
\]

Let \(c := 100, n_0 := 1 \).

Base case: \(n = n_0 = 1 \)

\[
\frac{1}{3} + 5 + 30 = \frac{35}{3} \leq 100
\]

Induction hypothesis: For some \(n \in \mathbb{N} \): \(f(n) \leq 100n^2 \)

Inductive step:

\[
f(n + 1) = \frac{1}{3}(n + 1)^2 + 5(n + 1) + 30
\]
\[
= \frac{1}{3}(n^2 + 2n + 1) + 5(n + 1) + 30
\]
\[
= f(n) + \frac{2}{3}n + \frac{16}{3}
\]
\[
\leq 100n^2 + \frac{2}{3}n + \frac{16}{3}
\]
\[
\leq 100n^2 + 200n + 100
\]
\[
= 100(n + 1)^2
\]

q.e.d.

Note: we chose a pretty large \(c \) for this prove – you should re-do this proof with smaller values for \(c \) (such as \(c = 1 \)) and see what happens.
Exercise 2

(a) Compare the growth of the following functions using the o, O, and Θ-notation:

1. $n \log n$
2. n^l for all $l \in \mathbb{N}$
3. 2^n

(b) Try to give a simple characterization of the growth of the following expressions using the Θ-notation:

1) $\sum_{i=1}^{n} \frac{1}{i}$
2) $\log(n!)$

Hint for $\log(n!)$: try to prove $n^2 \leq n! \leq n^n$ first!

Solution:

(a) $n^l \in o(2^n)$ for all $l \in \mathbb{N}$, because by de l'Hôpital's rule:

$$\lim_{n \to \infty} \frac{n^l}{2^n} = \lim_{n \to \infty} \frac{l \cdot n^{l-1}}{2^n \cdot \ln 2} = \lim_{n \to \infty} \frac{l \cdot (l-1) \cdot n^{l-2}}{2^n \cdot (\ln 2)^2} = \ldots = \lim_{n \to \infty} \frac{l!}{2^n \cdot (\ln 2)^l} = 0$$

Therefore, $n^l \in O(2^n)$ for all $l \in \mathbb{N}$.

Obviously, $n^1 \in o(n \log n)$ and $n^1 \in \Theta(n \log n)$, but for $l \geq 2$:

$$\lim_{n \to \infty} \frac{n \ln n}{n^l} = \lim_{n \to \infty} \frac{\ln n}{n^{l-1}} = \lim_{n \to \infty} \frac{1}{n \cdot (l-1) \cdot n^{l-2}} = 0$$

Therefore $n^l \in \omega(n \log n)$ for all $l \geq 2$. This also holds for any real $l > 1$.

As a consequence, $n \log n \in o(2^n)$.

(b) $\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)$:

Consider the functions $u(x) := \frac{1}{|x|}$ and $l(x) := \frac{1}{|x|}$, then:

$$l(x) \leq \frac{1}{x} \leq u(x) \Rightarrow \int_{1}^{n} l(x) \, dx \leq \int_{1}^{n} \frac{1}{x} \, dx \leq \int_{1}^{n} u(x) \, dx$$

$$\Rightarrow \sum_{i=2}^{n} \frac{1}{i} \leq \ln n - \ln 1 \leq \sum_{i=1}^{n} \frac{1}{i}$$

(draw a graph of $u(x)$ and $l(x)$ to see why the integrals are given by these sums).

Thus, $\ln n \leq \sum_{i=1}^{n} \frac{1}{i} \leq \sum_{i=1}^{n} \frac{1}{i}$, and therefore $\ln n \in O\left(\sum_{i=1}^{n} \frac{1}{i}\right)$.

As $2 \cdot \sum_{i=1}^{n} \frac{1}{i} = 2 \cdot \left(\frac{1}{2} + \cdots + \frac{1}{n}\right) > 1$, we know that

$$3 \sum_{i=2}^{n} \frac{1}{i} = 2 \sum_{i=2}^{n} \frac{1}{i} + \sum_{i=2}^{n} \frac{1}{i} > 1 + \sum_{i=2}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i}$$
and, therefore,
\[
\sum_{i=1}^{n} \frac{1}{i} < 3 \sum_{i=2}^{n} \frac{1}{i} \leq 3 \ln n \quad \Rightarrow \quad \sum_{i=1}^{n} \frac{1}{i} \in O(\ln n), \quad \text{q.e.d.}
\]

2) Using \(n^2 \leq n! \leq n^n \), we get:
\[
\ln n^2 \leq \ln(n!) \leq \ln n^n \quad \Rightarrow \quad \frac{n}{2} \ln n \leq \ln(n!) \leq n \ln n,
\]
which leads directly to the result \(\ln(n!) \in \Theta(n \ln n) \).

Proof for \(n^2 \leq n! \leq n^n \):

It is obvious that \(n! = 1 \cdot 2 \cdot \ldots \leq n \cdot n \cdot \ldots = n^n \).

To prove \(n^2 \leq n! \), or \(n^n \leq (n!)^2 \), we show that \(\frac{(n!)^2}{n^n} \geq 1 \):

\[
\frac{(n!)^2}{n^n} = \frac{n!}{n^n} \cdot n! = \prod_{i=0}^{n-1} \frac{n-i}{n} \cdot \prod_{i=0}^{n-1} (i+1) = \prod_{i=0}^{n-1} \frac{(n-i)(i+1)}{n}
\]

and \((n-i)(i+1) = -i^2 + ni - i + n = n + i(n - 1 - i) \geq n\). Therefore, all factors of the product are \(\geq 1 \). Consequently, the product itself is \(\geq 1 \).

Exercise 3

Let \(l(x) \) be the number of bits of the representation of \(x \) in the binary system. Prove:
\[
\sum_{i=1}^{n} l(i) \in \Theta(n \log n)
\]

Solution:

We need the following equalities:

- \(\sum_{i=1}^{n} \log i = \log \left(\prod_{i=1}^{n} i \right) = \log(n!) \in \Theta(n \log n) \), (see exercise 1(b), part 2!), and

- \(l(i) = \lfloor \log_2 i \rfloor + 1 \) (if the binary representation of a number has \(l \) bits, the respective number \(i \) will be between \(2^{l-1} \) and \(2^l - 1 \)).

If we can show that
\[
c_1 \log_2 i \leq \lfloor \log_2 i \rfloor \leq \log_2 i
\]
for some constant \(0 < c_1 < 1 \) (the second inequality is a trivial result of the definition of \(\lfloor \rfloor \)), and use the transformation
\[
\sum_{i=1}^{n} l(i) = \sum_{i=1}^{n} (\lfloor \log_2 i \rfloor + 1) = n + \sum_{i=1}^{n} \lfloor \log_2 i \rfloor,
\]
we get
\[
c_1 \left(n + \sum_{i=1}^{n} \log_2 i \right) \leq \sum_{i=1}^{n} l(i) \leq n + \sum_{i=1}^{n} \log_2 i \quad \Rightarrow \quad \sum_{i=1}^{n} l(i) \in \Theta(n \log n)
\]

3
We still have to prove that $c_1 \log_2 i \leq \lfloor \log_2 i \rfloor$ for some c_1:
For $i \geq 3$, we can choose c_1, such that $i^{c_1} < \frac{i}{2}$ (choose $c_1 := \frac{1}{2}$, e.g.). Then
\[c_1 \log_2 i = \log_2 (i^{c_1}) < \log_2 \frac{i}{2} = \log_2 i - 1 < \lfloor \log_2 i \rfloor. \]

As the inequality is also correct for $i \in \{1, 2\}$, we are finished.

Exercise 4

Prove that Θ defines an equivalence relation on the set of functions $\{f \mid f: \mathbb{N} \rightarrow \mathbb{R}\}$. Use that $(f, g) \in \Theta \iff f \in \Theta(g)$

Solution:

We define the relation Θ by $(f, g) \in \Theta :\iff f \in \Theta(g)$.

To show that Θ is an equivalence relation, we have to prove that:

- Θ is reflexive:
 - as $f \in \Theta(f)$ (e.g., choose constants $c_1 := \frac{1}{2}$, and $c_2 := \frac{3}{2}$), by definition $(f, f) \in \Theta$;

- Θ is symmetric:
 - if $f \in \Theta(g)$, then
 \begin{align*}
 f \in O(g) & \Rightarrow g \in \Omega(f) \\
 f \in \Omega(g) & \Rightarrow g \in O(f)
 \end{align*}

 Therefore, by definition $g \in \Theta(f)$;

- Θ is transitive:
 - if $f \in \Theta(g)$, and $g \in \Theta(h)$, then, there are constants c_1, c_2, c_3, and c_4, such that for sufficiently large n
 \begin{align*}
 c_1 f(n) & \leq g(n) \leq c_2 f(n) \\
 c_3 g(n) & \leq h(n) \leq c_4 g(n)
 \end{align*}

 Therefore, $c_1 c_3 f(n) \leq h(n) \leq c_2 c_4 h(n)$ which leads to $f \in \Theta(h)$.