Fundamental Algorithms 3

Exercise 1

Consider a partitioning algorithm that, in the worst case, will partition an array of \(m \) elements into two partitions of size \(\lfloor \epsilon m \rfloor \) and \(\lceil (1 - \epsilon)m \rceil \), where \(\epsilon \) is fixed, and \(0 < \epsilon < 1 \). Show that a quicksort algorithm based on this partitioning has a worst-case complexity of \(O(n \log n) \).

Hint or solution: solve the recurrence by guessing the solution and finding the involved constants.

K-Exercise 2 (An Iterative MergeSort)

The following iterative implementation of the MergeSort algorithm is proposed:

\[
\begin{align*}
\text{ItMergeSort} (A: \text{Array}[0..n-1]) \{} \\
\quad \text{// } n \text{ assumed to be a power of 2: } n=2^k \\
\quad k := \log_2(n) \\
\quad \text{// } m := 2 \\
\quad \text{for } L \text{ from 1 to } k \text{ do } \{ \\
\quad \quad \text{for } i \text{ from 0 to } \lfloor n/m \rfloor - 1 \text{ do } \{ \\
\quad \quad \quad \text{MergeIP}(A[i \times m \ldots i \times m+(m/2-1)], \\
\quad \quad \quad \quad A[i \times m+(m/2) \ldots i \times m+(m-1)], \\
\quad \quad \quad \quad \quad \quad \quad A[i \times m \ldots i \times m+(m-1)]); \\
\quad \quad \} \\
\quad \quad m := 2 \times m; \\
\quad \} \\
\}
\end{align*}
\]

The procedure MergeIP is equivalent to the procedure Merge discussed in the lecture, but can work directly on the array \(A \) (i.e., merges two adjacent subarrays of \(A \)).

a) Describe shortly and in plain words, how ItMergeSort compares to the recursive MergeSort implementation discussed in the lecture. For that purpose, draw a diagram that illustrates the sorting of an array \(A[0..7] \) for ItMergeSort.

b) Formulate a loop invariant for the \(L \)-loop of the algorithm, and prove its correctness.