Fundamental Algorithms 3

– Solution Examples –

Exercise 1

Consider a partitioning algorithm that, in the worst case, will partition an array of \(m \) elements into two partitions of size \(\lfloor \epsilon m \rfloor \) and \(\lceil (1 - \epsilon) m \rceil \), where \(\epsilon \) is fixed, and \(0 < \epsilon < 1 \). Show that a quicksort algorithm based on this partitioning has a worst-case complexity of \(O(n \log n) \).

Solution:

Again, we will only count comparisons between array elements.

Using that the partitioning step will require at most \(n \) comparisons, we get the following recurrence for the necessary number \(C(n) \) of comparisons:

\[
\begin{align*}
C(1) &= 0 \\
C(n) &= C(\epsilon n) + C((1 - \epsilon)n) + n
\end{align*}
\]

We guess \(C(n) := an \log_2 n + b \) as the solution, and try to find constants \(a \) and \(b \) such that the recurrence is satisfied:

case \(n = 1 \):

\[
C(1) = a \cdot 1 \cdot \log_2 1 + b = 0 \quad \Leftrightarrow \quad b = 0,
\]

hence, \(C(n) = an \log_2 n \).

case \(n > 1 \): We insert our guess into the recurrence:

\[
\begin{align*}
\quad an \log_2 n &= C(n) = C(\epsilon n) + C((1 - \epsilon)n) + n \\
\Leftrightarrow \quad an \log_2 n &= a\epsilon n \log_2(\epsilon n) + a(1 - \epsilon)n \log_2((1 - \epsilon)n) + n \\
\Leftrightarrow \quad an \log_2 n &= a\epsilon n (\log_2 \epsilon + \log_2 n) + a(1 - \epsilon)n (\log_2(1 - \epsilon) + \log_2 n) + n \\
\Leftrightarrow \quad an \log_2 n &= a\epsilon n \log_2 n + a(1 - \epsilon)n \log_2(1 - \epsilon) + a(1 - \epsilon)n \log_2 n + n \\
\Leftrightarrow \quad an \log_2 n &= a\epsilon n \log_2 n + a(1 - \epsilon)n \log_2 n + n
\end{align*}
\]
\[
an \log_2(1 - \epsilon) - aen \log_2(1 - \epsilon) + an \log_2 n - aen \log_2 n + n
\]
\[\Leftrightarrow \quad 0 = aen \log_2 \epsilon + an \log_2(1 - \epsilon) - aen \log_2(1 - \epsilon) + n
\]
\[\Leftrightarrow \quad 0 = an (e \log_2 \epsilon + (1 - \epsilon) \log_2(1 - \epsilon)) + n
\]
\[\Leftrightarrow \quad a = \frac{-1}{e \log_2 \epsilon + (1 - \epsilon) \log_2(1 - \epsilon)}
\]

Thus, the recurrence is satisfied if
\[
C(n) = \frac{-n \log_2 n}{e \log_2 \epsilon + (1 - \epsilon) \log_2(1 - \epsilon)}
\]

Note that the constant \(a\) will be very large for values of \(\epsilon\) that are close to either 0 or 1. Thus, even very bad partitions will not destroy the \(O(n \log n)\) complexity, provided that the respective partition sizes are bounded by \(en\) and \((1 - \epsilon)n\). However, bad partitions will still lead to slow algorithms due to the large constant factor involved.

K-Exercise 2 (An Iterative MergeSort)

The following iterative implementation of the MergeSort algorithm is proposed:

```
ItMergeSort (A: Array [0..n-1]) {
    // n assumed to be a power of 2: n=2^k
    k := \log_2(n)
    //
    m := 2
    for L from 1 to k do {
        for i from 0 to (n/m)-1 do {
            MergeIP (A[ i*m . . i*m+(m/2-1) ] ,
                    A[ i*m+(m/2) . . i*m+(m-1) ] ,
                    A[ i*m . . i*m+(m-1) ]);
        }
        m := 2*m;
    }
}
```

The procedure MergeIP is equivalent to the procedure Merge discussed in the lecture, but can work directly on the array A (i.e., merges two adjacent subarrays of A).

a) Describe shortly and in plain words, how ItMergeSort compares to the recursive MergeSort implementation discussed in the lecture. For that purpose, draw a diagram that illustrates the sorting of an array A[0..7] for ItMergeSort.

b) Formulate a loop invariant for the L-loop of the algorithm, and prove its correctness.

Solution:

a) In each iteration of the L-loop two adjacent subarrays are merged. The lengths of the merged subarrays \((m/2)\) is doubled from each L-loop iteration to the next. In that way, the same
merging steps as for the recursive implementation of MergeSort are executed. The divide steps are implicitly performed on the array.

\[
\begin{array}{cccccccc}
1 = 1
\end{array}
\]

\[
\begin{array}{cccccccc}
1 = 2
\end{array}
\]

\[
\begin{array}{cccccccc}
1 = 3
\end{array}
\]

b) We propose the following loop invariant:

At entry of the L-loop, the array A consists of \(\frac{2^n}{m} \) subarrays of length \(\frac{m}{2} \), where \(m = 2^L \). Each of the subarrays is sorted.

Here’s a sketch of the proof:

Initialisation: on the first entry, for \(L = 1 \) and \(m = 2^1 \), the length of the subarrays is claimed to be \(\frac{m}{2} = 1 \) with \(\frac{2^n}{m} = n \) subarrays – this is obviously satisfied, as subarrays of length 1 are always sorted.

Maintenance: The i-loop will take \(\frac{n}{m} \) pairs of two adjacent subarrays and merge them using the procedure MergeIP. Provided the correctness of MergeIP, this will lead to \(\frac{n}{m} \) subarrays of twice the length, which satisfies the loop invariant for the next iteration. Note that \(m \) is multiplied by 2, to retain \(m = 2^L \).

Termination: At termination, \(L = k + 1 \) and thus \(m = 2^{k+1} = 2n \). Hence, we have only \(\frac{2^n}{2m} = 1 \) subarray of length \(\frac{2n}{2} = n \), which is sorted. This implies the correctness of the sorting algorithm.