Fundamental Algorithms 4

Exercise 1

Try the Recursion Tree Method (compare lecture) for the following recurrence:

\[T(n) = T(n/3) + T(2n/3) + O(n) \]

Show that the height of the recursion tree is in \(O(\log(n)) \).

- We assume that all occurring \(n \) are multiples of 3. Further, let \(c \) be the constant in the \(O(n) \) term. We then obtain the recursion tree

\[
\begin{array}{c}
\text{cn} \\
\text{c(n/3)} & \text{c(2n/3)} \\
\text{c(n/9)} & \text{c(2n/9)} & \text{c(2n/9)} & \text{c(4n/9)} \\
\end{array}
\]

On each level, we obviously obtain \(cn \) operations, independent of the level.

- The longest path in the recursion tree is the rightmost path with problem size \(n \to 2/3n \to (2/3)^2n \to \cdots \to 1 \) until we stop at problem size 1. The height \(h \) of the tree can be determined via the equation \((2/3)^h n = 1 \), leading to \(h = \log_{3/2} n \).

We could expect the total cost to be \(O(cn \log_{3/2} n) = O(n \log n) \).

What could be a flaw using the recursion tree method for such unbalanced trees? Show that \(T(n) \in O(n \log(n)) \), anyway, by using the substitution method.

- Problem: If the tree was a complete binary tree, we would have \(2^{\log_{3/2} n} = n^{\log_{3/2} 2} \) leaves (as \(\log_{3/2} n = \log_{2} n / \log_{2} 3/2 = \log_{2} n / \log_{2} 2 \), using the formula \(\log_{a} b = 1 / \log_{b} a \)). As \(\log_{3/2} 2 > 1 \), the number of terms would be \(\omega(n \log n) \) on the last level. Hence, the simple approach of assuming constant effort \(c \) for \(T(1) \) on the final level does no longer work: in that case, the costs would sum up to \(\Theta(cn^{\log_{3/2} 2}) \) on the last level – and not \(cn! \)
Hence, we’d have to explicitly consider that the tree starts to thin out much earlier (starting at level $1 + \log_3 n$), and we would have to examine the exact cost on all subsequent levels, which is more tedious than our tree diagram suggests.

- We simplify and assume that the total cost are $O(n \log n)$ and use the substitution method to verify this:

 Assuming that $T(n) \leq an \log n$ for a suitable constant a, we obtain

 \[
 T(n) \leq T(n/3) + T(2n/3) + cn \\
 \leq a(n/3) \log(n/3) + a(2n/3) \log(2n/3) + cn \\
 = a3n/3 \log n - a ((n/3) \log 3 + (2n/3) \log(3/2)) + cn \\
 = an \log n - a ((n/3) \log 3 + (2n/3) \log 3 - (2n/3) \log 2) + cn \\
 = an \log n - an (\log 3 - 2/3 \log 2) + cn \\
 \leq an \log n
 \]

 for $d \geq c / (\log 3 - 2/3 \log 2)$.

Exercise 2

For the so-called BFPRT Algorithm, an algorithm to determine the median element of an array, we obtain the following (slightly simplified) recurrence equation for its running time $T(n)$ (depending on the number n of elements):

\[
T(n) = s(n,k) + T\left(\frac{n}{k}\right) + T\left(\frac{l}{2k}n\right).
\]

k and l are parameters (k usually small, for example $k = 3$ or $k = 5$) where $k = 2l + 1$. For the function s, we can assume $s(n,k) \in \Theta(n \log k)$.

a) Show that $T(n) \in O(n)$.

b) Does it make sense to use large values for k (and l, resp.)?

Solution:

We try to prove the claim by inserting the assumed solution $T(n) \leq cn$ into the recurrence equation:

\[
\begin{align*}
\frac{cn}{k} & \geq s(n,k) + \frac{c}{k} \cdot n \\
\Leftrightarrow c(n - \frac{n}{k} - \frac{l}{2k}n) & \geq s(n,k)
\end{align*}
\]

As $s(n,k) \in \Theta(n \log k)$, there is a constant C_s such that $s(n,k) \leq C_s n \log k$ for large enough n. Therefore, c has to be large enough to satisfy

\[
\begin{align*}
c(n - \frac{n}{k} - \frac{l}{2k}n) & \geq C_s n \log k \geq s(n,k) \\
\Leftrightarrow c & \geq \frac{C_s \log k}{1 - \frac{1}{k} - \frac{l}{2k}} \in O(\log k)
\end{align*}
\]

Hence, we can choose a suitable, large enough c that is independent of n, and thus prove $T(n) \in O(n)$, but the involved constant has to slightly grow with k, as $c \in O(\log k)$. As a consequence, k should be of limited size.