Fundamental Algorithms 8

Exercise 1

Write an algorithm that copies all keys that are stored in a binary search tree into an array of appropriate size. In the resulting array, the keys shall be sorted in descending order.

Solution:

The main idea of the algorithm is to rely on recursion and:

1. copy all keys of the right subtree to the array (in sorted order, using the algorithm recursively);
2. copy the root of the tree into the array;
3. copy all keys of the left subtree to the array (in sorted order, using the algorithm recursively).

Using pseudo code, the algorithm can be written as:

```pseudo
tree2array(T: BinTree, A: Array[1..n], pos: Integer) : Integer {
    /* write elements of the binary search tree T into array A,
       starting at position pos;
       return index of next empty element in A
    */
    if (T != emptyTree) { /* if T is not an empty tree */
        pos := tree2array(T.rightSon, A, pos);
        A[pos] := T.key; pos := pos + 1;
        pos := tree2array(T.leftSon, A, pos);
    }
    return pos;
}
```

Exercise 2

Consider the binary tree given by the expression
x = (5, (3, emptyTree, (4, emptyTree, emptyTree)),
 (8, (6, emptyTree, emptyTree), (10, (9, emptyTree, emptyTree),
 (13, emptyTree, emptyTree))))

• draw a diagram of this binary tree and decide whether its a binary search tree

```
    5
   / \  
  3   8
 / \  /  
4   6 10
   /   /  
  9  13 
```

For each node, all keys in the left subtree are smaller than that in the node, and all keys in the right subtree are larger. Hence, the tree is a binary search tree.

• perform the following operations (using the resp. algorithms from the lectures), and draw a diagram of the search tree after each operation:
 – TREE_INSERT(x, 11)

```
    5
   / \  
  3   8
 / \  /  
4   6 10
   /   /  
  9  13 11
```

 – TREE_DELETE(x, 5)

```
    5
   / \  
  3   8
 /     /  
4   6   10
     /   /  
     9  13 11
```

 – TREE_INSERT(x, 5)

```
    5
   / \  
  3   8
 /     /  
4   6   10
     /   /  
     9  13 11
```

 – TREE_INSERT(x, 12)

```
    5
   / \  
  3   8
 /     /  
4   6   10
     /   /  
     9  13 11
    / 
    5 12
Exercise 3

Decide whether the binary tree given in exercise IV is an AVL tree
- before the insert/delete operations, and
- after each of the regular insert/delete operations.

Again, perform the insert/delete operations given in exercise IV, and name and perform the rotation(s) to restore the AVL property after each step (if required). Draw a diagram of the search tree after each of your insert/delete, or rotation operations.

Solution:

Before the insert/delete operations, the height balances for the nodes are:

Therefore, the binary search tree is also an AVL tree.
- after TREE_INSERT(x, 11), the AVL property is violated in node 8 → left-rotation on node 8:

- after TREE_DELETE(x, 5), we still have an AVL tree → rotation required:

- after TREE_INSERT(x, 5), the AVL property is violated in node 3, which requires a left-rotation on node 3:
after \textsc{Tree}\_\textsc{Insert}(x, 12), the AVL property is violated in node 13, and a left-right-rotation is required: