Fundamental Algorithms

Chapter 2: Sorting

Michael Bader

Winter 2014/15
Part I

Simple Sorts
The Sorting Problem

Definition

Sorting is required to order a given sequence of elements, or more precisely:

Input: a sequence of n elements a_1, a_2, \ldots, a_n

Output: a permutation (reordering) a'_1, a'_2, \ldots, a'_n of the input sequence, such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

- we will assume the elements a_1, a_2, \ldots, a_n to be integers (or any element/data type on which a total order \leq is defined)
- a sorting algorithm may output the permuted data or also the permuted set of indices
Insertion Sort

Idea: sorting by inserting

- successively generate ordered sequences of the first j numbers: $j = 1, j = 2, \ldots, j = n$
- in each step, $j \rightarrow j + 1$, one additional integer has to be inserted into an already ordered ordered sequence

Data Structures:

- numbers are sorted in place: output sequence will be stored in A itself (hence, content of A is changed)
Insertion Sort – Implementation

InsertionSort(A: Array[1..n]) {

 for j from 2 to n {
 // insert A[j] into sequence A[1..j-1]

 key := A[j];

 i := j - 1; // initialize i for while loop
 while i >= 1 and A[i] > key {
 A[i+1] := A[i];
 i := i - 1;
 }
 A[i+1] := key;
 }
}
Correctness of InsertionSort

Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of all elements originally in A[1..j-1], but in sorted order.

Initialization:

- loops starts with j=2; hence, A[1..j-1] consists of the element A[1] only
- A[1] contains only one element, A[1], and is therefore sorted.
Correctness of InsertionSort

Loop invariant:
Before each iteration of the for-loop, the subarray $A[1..j-1]$ consists of all elements originally in $A[1..j-1]$, but in sorted order.

Maintenance:
- assume that the while loop works correctly (or prove this using an additional loop invariant):
 - after the while loop, i contains the largest index for which $A[i]$ is smaller than the key
 - $A[i+2..j]$ contains the (sorted) elements previously stored in $A[i+1..j-1]$; also: $A[i+1]$ and all elements in $A[i+2..j]$ are \geq key
- the key value, $A[j]$, is thus correctly inserted as element $A[i+1]$ (overwrites the duplicate value $A[i+1]$)
- after execution of the loop body, $A[1..j]$ is sorted
- thus, before the next iteration ($j:=j+1$), $A[1..j-1]$ is sorted
Correctness of InsertionSort

Loop invariant:
Before each iteration of the for-loop, the subarray $A[1..j-1]$ consists of all elements originally in $A[1..j-1]$, but in sorted order.

Termination:
- The for-loop terminates when j exceeds n (i.e., $j=n+1$)
- Thus, at termination, $A[1..(n+1)-1] = A[1..n]$ is sorted and contains all original elements
Insertion Sort – Number of Comparisons

InsertionSort(A: Array[1..n]) {

 for j from 2 to n {
 key := A[j];

 i := j - 1;
 while i >= 1 and A[i] > key {
 A[i + 1] := A[i];
 i := i - 1;
 }
 A[i + 1] := key;
 }
}

n-1 iterations

\[t_j \text{ iterations} \]
\[\rightarrow t_j \text{ comparisons} \]
\[A[i] > \text{key} \]

\[\Rightarrow \sum_{j=2}^{n} t_j \text{ comparisons} \]
Insertion Sort – Number of Comparisons (2)

• counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)

• where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)

• good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis

• what is the “best case”?
• what is the “worst case”?
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis of the “best case”:
- in the best case, \(t_j = 1 \) for all \(j \)
- happens only, if \(A[1..n] \) is already sorted

\[\Rightarrow T_{IS}(n) = \sum_{j=2}^{n} 1 = n - 1 \in \Theta(n) \]
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{\text{IS}} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis of the “worst case”:

- in the worst case, \(t_j = j - 1 \) for all \(j \)
- happens, if \(A[1..n] \) is already sorted in opposite order

\[\Rightarrow T_{\text{IS}}(n) = \sum_{j=2}^{n} (j - 1) = \frac{1}{2} n(n - 1) \in \Theta(n^2) \]
Insertion Sort – Number of Comparisons (2)

- counted number of comparisons: \(T_{IS} = \sum_{j=2}^{n} t_j \)
- where \(t_j \) is the number of iterations of the while loop (which is, of course, unknown)
- good estimate for the run time, if the comparison is the most expensive operation (note: replace “\(i \geq 1 \)” by for loop)

Analysis of the “average case”:
- best case analysis: \(T_{IS}(n) \in \Theta(n) \)
- worst case analysis: \(T_{IS}(n) \in \Theta(n^2) \)

\(\Rightarrow \) What will be the ”typical” (average, expected) case?
Running Time and Complexity

“Run(ning) Time”

- the notation $T(n)$ suggest a “time”, such as run(ning) time of an algorithm, which depends on the input (size) n
- in practice: we need a precise model how long each operation of our programmes takes \rightarrow very difficult on real hardware!
- we will therefore determine the number of operations that determine the run time, such as:
 - number of comparisons (sorting, e.g.)
 - number of arithmetic operations (Fibonacci, e.g.)
 - number of memory accesses

“Complexity”

- characterises how the run time depends on the input (size), typically expressed in terms of the Θ-notation
- “algorithm xyz has linear complexity” \rightarrow run time is $\Theta(n)$
Average Case Complexity

Definition (expected running time)

Let \(X(n) \) be the set of all possible input sequences of length \(n \), and let \(P: X(n) \to [0, 1] \) be a probability function such that \(P(x) \) is the probability that the input sequence is \(x \). Then, we define

\[
\bar{T}(n) = \sum_{x \in X(n)} P(x) T(x)
\]

as the expected running time of the algorithm.

Comments:

- we require an exact probability distribution (for InsertionSort, we could assume that all possible sequences have the same probability)
- we need to be able to determine \(T(x) \) for any sequence \(x \) (usually much too laborious to determine)
Average Case Complexity of Insertion Sort

Heuristic estimate:

- we assume that we need \(\frac{j}{2} \) steps in every iteration:

\[
\Rightarrow \overline{T}_{IS}(n) \approx \sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \sum_{j=2}^{n} j \in \Theta(n^2)
\]

- note: \(\frac{j}{2} \) isn’t even an integer . . .

- Just considering the number of comparisons of the “average case” can lead to quite wrong results!

in general \(E(T(n)) \neq T("E(n)") \)
Bubble Sort

BubbleSort(A:Array[1..n]) {
 for i from 1 to n do {
 for j from n downto i+1 do {
 }
 }
}

Basic ideas:

• compare neighboring elements only
• exchange values if they are not in sorted order
• repeat until array is sorted (here: pessimistic loop choice)
Bubble Sort – Homework

Prove correctness of Bubble Sort:
- find invariant for i-loop
- find invariant for j-loop

Number of comparisons in Bubble Sort:
- best/worst/average case?
Part II

Mergesort and Quicksort
Mergesort

Basic Idea: divide and conquer

- **Divide** the problem into two (or more) subproblems:
 → split the array into two arrays of equal size
- **Conquer** the subproblems by solving them recursively:
 → sort both arrays using the sorting algorithm
- **Combine** the solutions of the subproblems:
 → merge the two sorted arrays to produce the entire sorted array
Combining Two Sorted Arrays: Merge

```
Merge (L:Array[1..p], R:Array[1..q], A:Array[1..n]) {
  // merge the sorted arrays L and R into A (sorted)
  // we presume that n=p+q
  i := 1; j := 1:
  for k from 1 to n do {
    if i > p
      then { A[k]:=R[j]; j:=j+1; }
    else if j > q
      then { A[k]:=L[i]; i:=i+1; }
    else if L[i] < R[j]
      then { A[k]:=L[i]; i:=i+1; }
    else { A[k]:=R[j]; j:=j+1; }
  }
}
```
Correctness and Run Time of Merge

Loop invariant:
Before each cycle of the for loop:

- A has the k-1 smallest elements of L and R already merged, (i.e. in sorted order and at indices 1, . . . , k-1);
- L[i] and R[j] are the smallest elements of L and R that have not been copied to A yet (i.e. L[1..i-1] and R[1..j-1] have been merged to A)

Run time:

\[T_{\text{Merge}}(n) \in \Theta(n) \]

- for loop will be executed exactly \(n \) times
- each loop contains constant number of commands:
 - exactly 1 copy statement
 - exactly 1 increment statement
 - 1–3 comparisons
MergeSort

```
MergeSort(A: Array[1..n]) {
    if n > 1 then {
        m := floor(n/2);
        create array L[1...m];
        for i from 1 to m do { L[i] := A[i]; }

        create array R[1...n-m];
        for i from 1 to n-m do { R[i] := A[m+i]; }

        MergeSort(L);
        MergeSort(R);

        Merge(L,R,A);
    }
}
```
Number of Comparisons in MergeSort

• Merge performs exactly n element copies on n elements
• Merge performs at most $c \cdot n$ comparisons on n elements
• MergeSort itself does not contain any comparisons between elements; all comparisons done in Merge

⇒ number of element-copy operations for the entire MergeSort algorithms can be specified by a recurrence (includes n copy operations for splitting the arrays):

$$C_{MS}(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
C_{MS} \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + C_{MS} \left(n - \left\lfloor \frac{n}{2} \right\rfloor \right) + 2n & \text{if } n \geq 2
\end{cases}$$

⇒ number of comparisons for the entire MergeSort algorithm:

$$T_{MS}(n) \leq \begin{cases}
0 & \text{if } n \leq 1 \\
T_{MS} \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T_{MS} \left(n - \left\lfloor \frac{n}{2} \right\rfloor \right) + cn & \text{if } n \geq 2
\end{cases}$$
Number of Comparisons in MergeSort (2)

Assume $n = 2^k$, c constant:

$$
T_{MS}(2^k) \leq T_{MS}(2^{k-1}) + T_{MS}(2^{k-1}) + c \cdot 2^k
$$

$$
\leq 2T_{MS}(2^{k-1}) + 2^k c
$$

$$
\leq 2^2 T_{MS}(2^{k-2}) + 2 \cdot 2^{k-1} c + 2^k c
$$

$$
\leq \ldots
$$

$$
\leq 2^k T_{MS}(2^0) + 2^{k-1} \cdot 2^1 c + \ldots + 2^j \cdot 2^{k-j} c
$$

$$
+ \ldots + 2 \cdot 2^{k-1} c + 2^k c
$$

$$
\leq \sum_{j=1}^{k} 2^k c = ck \cdot 2^k = cn \log_2 n \in O(n \log n)
$$
Quicksort

Basic Idea: divide and conquer

- **Divide** the input array $A[p..r]$ into parts $A[p..q]$ and $A[q+1..r]$, such that every element in $A[q+1..r]$ is larger than all elements in $A[p..q]$.
- **Conquer:** sort the two arrays $A[p..q]$ and $A[q+1..r]$
- **Combine:** if the divide and conquer steps are performed in place, then no further combination step is required.

Partitioning using a **pivot element**:

- all elements that are smaller than the pivot element should go into the “smaller” partition ($A[p..q]$)
- all elements that are larger than the pivot element should go into the “larger” partition ($A[q+1..r]$)
Partitioning the Array (Hoare’s Algorithm)

Partition \((A:\text{Array}[p..r]) : \text{Integer}\) {
 // \(x\) is the pivot (chosen as first element):
 \(x := A[p];\)
 // partitions grow towards each other
 \(i := p-1; j := r+1;\) // (partition boundaries)
 \textbf{while} true \textbf{do} { // \(i<j\): partitions haven’t met yet
 // leave large elements in right partition
 \textbf{do} \{ \(j:=j-1;\) \} \textbf{while} \(A[j]>x;\)
 // leave small elements in left partition
 \textbf{do} \{ \(i:=i+1;\) \} \textbf{while} \(A[i]<x;\)
 // swap the two first “wrong” elements
 \textbf{if } i < j
 then exchange \(A[i]\) and \(A[j];\)
 \textbf{else return} j ;
 }
}
Time Complexity of Partition

How many statements are executed by the nested while loops?

- monitor increments/decrements of i and j
- after \(n := r - p \) increments/decrements, i and j have the same value

\[\Theta(n) \] comparisons with the pivot

\[O(n) \] element exchanges

Hence: \(T_{\text{Part}}(n) \in \Theta(n) \)
Implementation of QuickSort

QuickSort (A: Array[p..r])
{
 if p=r then return;
 // only proceed, if A has at least 2 elements:
 q := Partition (A);
 QuickSort (A[p..q]);
 QuickSort (A[q+1..r]);
}

Homework:

• prove correctness of Partition
• prove correctness of QuickSort
Time Complexity of QuickSort

Best Case:
- assume that all partitions are split exactly into two halves:
 \[T_{QS}^{\text{best}}(n) = 2T_{QS}^{\text{best}}\left(\frac{n}{2}\right) + \Theta(n) \]

- analogous to MergeSort:
 \[T_{QS}^{\text{best}}(n) \in \Theta(n \log n) \]

Worst Case:
- Partition will always produce one partition with only 1 element:
 \[
 T_{QS}^{\text{worst}}(n) = T_{QS}^{\text{worst}}(n - 1) + T_{QS}^{\text{worst}}(1) + \Theta(n)
 = T_{QS}^{\text{worst}}(n - 1) + \Theta(n) = T_{QS}^{\text{worst}}(n - 2) + \Theta(n - 1) + \Theta(n)
 = \ldots = \Theta(1) + \ldots + \Theta(n - 1) + \Theta(n) \in \Theta(n^2)
 \]
Time Complexity of QuickSort – Special Cases?

What happens if:

- A is already sorted?
 → partition sizes always 1 and n-1 ⇒ Θ(n^2)

- A is sorted in reverse order?
 → partition sizes always 1 and n-1 ⇒ Θ(n^2)

- one partition has always at most a elements (for a fixed a)?
 → same complexity as a = 1 ⇒ Θ(n^2)

- partition sizes are always n(1 – a) and na with 0 < a < 1?
 → same complexity as best case ⇒ Θ(n log n)

Questions:

- What happens in the “usual” case?
- Can we force the best case?
Randomized QuickSort

RandPartition (A: Array [p..r]) : Integer {
 // choose random integer i between p and r
 i := rand(p,r);
 // make A[i] the (new) Pivot element:
 exchange A[i] and A[p];
 // call Partition with new pivot element
 q := Partition (A);
 return q;
}

RandQuickSort (A: Array [p..r]) {
 if p >= r then return;
 q := RandPartition (A);
 RandQuickSort (A[p..q]);
 RandQuickSort (A[q+1..r]);
}
Time Complexity of RandQuickSort

Best/Worst-case complexity?
- RandQuickSort may still produce the worst (or best) partition in each step
- worst case: $\Theta(n^2)$
- best case: $\Theta(n \log n)$

However:
- it is not determined which input sequence (sorted order, reverse order) will lead to worst case behavior (or best case behavior);
- any input sequence might lead to the worst case or the best case, depending on the random choice of pivot elements.

Thus: only the **average-case complexity** is of interest!
Average Case Complexity of RandQuickSort

Assumptions:
- we compute $\bar{T}_{RQS}(A)$, i.e., the expected run time of RandQuickSort for a given input A
- $rand(p,r)$ will return uniformly distributed random numbers (all pivot elements have the same probability)
- all elements of A have different size: $A[i] \neq A[j]$

Basic Idea:
- let k be the number of elements that are smaller than the randomly chosen pivot element ($\Rightarrow 0 \leq k < n$)
- for $0 < k < n$, the partition sizes will be k and $n - k$
- for $k = 0$, the partition sizes will be 1 and $n - 1$
- the probability of $k = 0, \ldots, n - 1$ is always $\frac{1}{n}$.
Average Case Complexity of RandQuickSort (2)

The expected runtime of RandQuickSort is

\[\bar{T}_{\text{RQS}}(n) = \sum_{j=0}^{n-1} P(k = j) T_{\text{RQS}}(n|k=j) \]

\[= \frac{1}{n} \left((T_{\text{RQS}}(1) + T_{\text{RQS}}(n-1)) + \sum_{j=1}^{n-1} (T_{\text{RQS}}(j) + T_{\text{RQS}}(n-j)) \right) + \Theta(n) \]

- Note: all \(T_{\text{RQS}}(j) \) depend on the choice of the next pivot elements
- simplifying assumption: \(T_{\text{RQS}}(j) = \bar{T}_{\text{RQS}}(j) \)
Average Case Complexity of RandQuickSort (3)

As $\bar{T}_{RQS}(1) \in \Theta(1)$ and $\bar{T}_{RQS}(n - 1) \in \Theta(n^2)$ (worst case analysis):

$$\frac{1}{n} (T_{RQS}(1) + T_{RQS}(n - 1)) \in O(n)$$

Thus

$$\bar{T}_{RQS}(n) = \frac{1}{n} \left(\sum_{j=1}^{n-1} (\bar{T}_{RQS}(j) + \bar{T}_{RQS}(n - j)) \right) + \Theta(n)$$

$$= \frac{2}{n} \sum_{j=1}^{n-1} \bar{T}_{RQS}(j) + \Theta(n)$$

Solve recurrence equation to obtain:

$$\bar{T}_{RQS} \in \Theta(n \log n)$$
Part III

Outlook: Optimality of Comparison Sorts
Are Mergesort and Quicksort optimal?

Definition

Comparison sorts are sorting algorithms that use only comparisons (i.e. tests as ≤, =, >, . . .) to determine the relative order of the elements.

Examples:
- InsertSort, BubbleSort
- MergeSort, (Randomised) Quicksort

Question: Is $T(n) \in \Theta(n \log n)$ the best we can get (in the worst/average case)?
Decision Trees

Definition

A decision tree is a binary tree in which each internal node is annotated by a comparison of two elements. The leaves of the decision tree are annotated by the respective permutations that will put an input sequence into sorted order.
Each comparison sort can be represented by a decision tree:

- a path through the tree represents a sequence of comparisons
- sequence of comparisons depends on results of comparisons
- can be pretty complicated for Mergesort, Quicksort, …

A decision tree can be used as a comparison sort:

- if every possible permutation is annotated to at least one leaf of the tree!
- if (as a result) the decision tree has at least $n!$ (distinct) leaves.
A Lower Complexity Bound for Comparison Sorts

- A binary tree of height h (h the length of the longest path) has at most 2^h leaves.
- To sort n elements, the decision tree needs $n!$ leaves.

Theorem

Any decision tree that sorts n elements has height $\Omega(n \log n)$.

Proof:

- h comparisons in the worst case are equivalent to a decision tree of height h
- with h comparisons, we can sort n elements (at best), if

$$n! \leq 2^h \iff h \geq \log(n!) \in \Omega(n \log n)$$

- because:

$$h \geq \log(n!) \geq \log \left(n^{n/2} \right) = \frac{n}{2} \log n$$
Optimality of Mergesort and Quicksort

Corollaries:
- MergeSort is an optimal comparison sort in the worst/average case
- QuickSort is an optimal comparison sort in the average case

Consequences and Alternatives:
- comparison sorts can be faster than MergeSort, but only by a constant factor
- comparison sorts can not be asymptotically faster
- sorting algorithms might be faster, if they can exploit additional information on the size of elements
- examples: BucketSort, CountingSort, RadixSort
Part IV

Bucket Sort – Sorting Beyond “Comparison Only”
Bucket Sort

Basic Ideas and Assumptions:

- pre-sort numbers in buckets that contain all numbers within a certain interval
- hope (assume) that input elements are evenly distributed and thus uniformly distributed to buckets
- sort buckets and concatenate them

Requires “Buckets”:

- can hold arbitrary numbers of elements
- can insert elements efficiently: in $O(1)$ time
- can concatenate buckets efficiently: in $O(1)$ time
- remark: linked lists will do
Implementation of BucketSort

BucketSort \((A:\text{Array}[1..n])\)

{
 Create \textbf{Array} \(B[0..n-1]\) of Buckets;
 \hspace{1em} // assume all Buckets \(B[i]\) are empty at first

 \textbf{for} \hspace{0.5em} i \hspace{0.5em} \textbf{from} \hspace{0.5em} 1 \hspace{0.5em} \textbf{to} \hspace{0.5em} n \hspace{0.5em} \textbf{do} \{
 insert \(A[i]\) into Bucket \(B[\text{floor}(n * A[i])];
 \}

 \textbf{for} \hspace{0.5em} i \hspace{0.5em} \textbf{from} \hspace{0.5em} 0 \hspace{0.5em} \textbf{to} \hspace{0.5em} n-1 \hspace{0.5em} \textbf{do} \{
 sort Bucket \(B[i]\) ;
 \}

 concatenate Buckets \(B[0], B[1], \ldots, B[n-1]\) into \(A\)
}
Number of Operations of BucketSort

Operations:
- \(n \) operations to distribute \(n \) elements to buckets
- plus effort to sort all buckets

Best Case:
- if each bucket gets 1 element, then \(\Theta(n) \) operations are required

Worst Case:
- if one bucket gets all elements, then \(T(n) \) is determined by the sorting algorithm for the buckets
Bucket sort – Average Case Analysis

- probability that bucket \(i \) contains \(k \) elements:
 \[
P(n_i = k) = \binom{n}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}
 \]

- expected mean and variance for such a distribution:
 \[
 E[n_i] = n \cdot \frac{1}{n} = 1 \quad \text{Var}[n_i] = n \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right) = \left(1 - \frac{1}{n}\right)
 \]

- InsertionSort for buckets \(\Rightarrow \leq cn^2 \in O(n_i^2) \) operations per bucket
- expected operations to sort one bucket:
 \[
 \bar{T}(n_i) \leq \sum_{k=0}^{n-1} P(n_i = k) \cdot ck^2 = cE[n_i^2]
 \]
Bucketsort – Average Case Analysis (2)

- theorem from statistics:
 \[E[X^2] = E[X]^2 + \text{Var}(X) \]

- expected operations to sort one bucket:
 \[
 \bar{T}(n_i) \leq cE[n_i^2] = c \left(E[n_i]^2 + \text{Var}[n_i] \right) = c \left(1^2 + 1 - \frac{1}{n} \right) \in \Theta(1)
 \]

- expected operations to sort all buckets:
 \[
 \bar{T}(n) = \sum_{i=0}^{n-1} \bar{T}(n_i) \leq c \sum_{i=0}^{n-1} \left(2 - \frac{1}{n} \right) \in \Theta(n)
 \]

 (note: expected value of the sum is the sum of expected values)