Fundamental Algorithms

Chapter 4: Parallel Sorting

Michael Bader

Winter 2014/15
Sequential MergeSort

MergeSort(A: Array[1..n]) {
 if n > 1 then {
 m := floor(n/2);
 create array L[1..m];
 for i from 1 to m do { L[i] := A[i]; }

 create array R[1..n-m];
 for i from 1 to n-m do { R[i] := A[m+i]; }

 MergeSort(L);
 MergeSort(R);

 Merge(L,R,A);
 }
}

(How) can we parallelise MergeSort?
MergeSort in Parallel?

```
MergeSortPar(A: Array[1..n]) {
    if n > 1 then {
        m := floor(n/2);
        do in parallel {
            create array L[1..m];
            for i from 1 to m do { L[i] := A[i]; }
            MergeSort(L); // even better: MergeSortPar(L)
            create array R[1..n-m];
            for i from 1 to n-m do { R[i] := A[m+i]; }
            MergeSort(R); // even better: MergeSortPar(R)
        }
        Merge(L,R,A); // desired: MergePRAM(L,R,A)
    }
}
```
Parallel MergeSort

Idea:
- parallelise “divide-and-conquer”: recursive calls can be done in parallel
- use $p/2$ processors for each of the recursive calls (if p processors are available)

Merging in Parallel?
- can Merge be executed in parallel?
- by how many processors?
Can Merge be Parallelised?

```plaintext
Merge (L: Array [1..p], R: Array [1..q], A: Array [1..n]) {
// merge the sorted arrays L and R into A (sorted)
// we presume that n=p+q
    i := 1; j := 1;
    for k from 1 to n do {
        if i > p then {
            A[k] := R[j]; j := j + 1;
        } else if j > q then {
            A[k] := L[i]; i := i + 1;
        } else if L[i] < R[j] then {
            A[k] := L[i]; i := i + 1;
        } else {
            A[k] := R[j]; j := j + 1;
        }
    }

Problem: inherently sequential progress through arrays A, L, R
```
Odd-Even Merge

Ideas:

• start with a two sorted lists of length $n/2$:

 2 3 4 7 1 5 6 8

• consider elements with odd and even index:

 2 3 4 7 1 5 6 8

• sort odd- and even-indexed elements separately:

 1 3 2 5 4 7 6 8

Observations

• final sequence is nearly sorted (only pairwise exchange required)
• odd- and even-indexed elements can be processed in parallel
Correctness of the Final Exchange Step

Claim (after odd/even sort):

• exchanges of a_{2i} and a_{2i+1} are sufficient for sorting

\[
\begin{array}{cccccccc}
1 & 3 & 2 & 5 & 4 & 7 & 6 & 8
\end{array}
\]

Counting Argument: x an odd-indexed element: $x = a_{2i+1}$

• exactly i odd-indexed elements are smaller than x (sorted lists)
• $d_l, d_r =$ number of odd-indexed elements $< x$ in left/right half
 \[i = d_l + d_r \]
• $v_l, v_r =$ number of even-indexed elements $< x$ in left/right half
• x in left half: $v_l = d_l$, $v_r \in \{d_r, d_r - 1\}$
• x in right half: $v_l \in \{d_l, d_l - 1\}$, $v_r = d_r$
• consequence: $v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i - 1\}$
Correctness of the Final Exchange Step (2)

Counting Argument:

- count even- and odd-indexed elements $\lt x$ in both halves
- $v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i - 1\}$

Possible Scenarios:

- $v_l + v_r = i \Rightarrow$ exactly i even elements $\lt x$
 \Rightarrow i-th even-indexed element $a_{2i} \lt x \Rightarrow$ OK
- $v_l + v_r = i - 1 \Rightarrow$ exactly $i - 1$ even elements $\lt x$
 therefore: $a_{2(i-1)} \lt x$, but $a_{2i} > x \Rightarrow$ exchange
- in both cases:
 $a_{2(i+1)} \gt x$ (at most i even elements $\lt x$) \Rightarrow OK
 $a_{2(i-1)} \lt x$ (at least $i - 1$ even elements $\lt x$) \Rightarrow OK

\Rightarrow only the left even-indexed neighbour of x can be out of place
OddEvenMerge – A First Try

OddEvenMerge_1 (A: Array[1..n]) {
 // merge the sorted arrays A[1..n/2] and A[n/2+1..n]
 // into A (sorted); n is a power of 2

 OddEvenSplit(A, Odd, Even);
 Sort(Odd); Sort(Even);
 OddEvenJoin(A, Odd, Even);

 for i from 1 to n/2−1 do {
 then exchange A[2i] and A[2i+1]
 }
}
OddEvenSplit and OddEvenJoin (in parallel!)

OddEvenSplit \((A: Array[1..n], \)
\[Odd: Array[1..n/2], Even: Array[1..n/2]) \) \{
\[for \ i \ from \ 1 \ to \ n/2 \ do \ in \ parallel \ \{ \]
Odd[i] := A[2i − 1];
Even[i] := A[2i];
\}
\}

OddEvenJoin \((A: Array[1..n], \)
\[Odd: Array[1..n/2], Even: Array[1..n/2]) \) \{
\[for \ i \ from \ 1 \ to \ n/2 \ do \ in \ parallel \ \{ \]
A[2i] := Even[i];
\}
\}
Towards a Better Implementation of OddEvenMerge

After OddEvenSplit:

- Odd consists of two halves that are already sorted
- Even consists of two halves that are already sorted

⇒ Odd and Even can be sorted using OddEvenMerge

OddEvenMerge in Parallel:

- OddEvenSplit and OddEvenJoin are already parallel
- calls to OddEvenMerge can be executed in parallel (recursive calls will again issues parallel calls)
- final exchange loop can be parallelised
Parallel OddEvenMerge

OddEvenMergePRAM (A: Array [1..n]) {
 ! add stopping criterion:
 if n<=2 then { SortTwo(A); return; };

 OddEvenSplit(A, Odd, Even);

 do in parallel {
 OddEvenMergePRAM(Odd);
 OddEvenMergePRAM(Even);
 }

 OddEvenJoin(A, Odd, Even);

 for i from 1 to n/2−1 do in parallel {
 then exchange A[2i] and A[2i+1]
 }
}
Parallelism in OddEvenMerge

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>1</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

(on 4 processors)

(on 2×2 processors)

(on 4×1 processors)

(on 2×2 processors)

(on 4 processors)
OddEvenMergeSort (in Parallel)

OddEvenMergeSortPRAM(A: *Array* [1..n]) {
 ! EREW PRAM with n/2 processors
 ! n assumed to be 2^k
 if n \geq 2 then {

 do in parallel {
 OddEvenMergeSortPRAM(A[1..n/2]);
 |
 OddEvenMergeSortPRAM(A[n/2+1..n]);
 };

 OddEvenMergePRAM(A);

 }
}
Complexity of Odd-Even MergeSort

Complexity of OddEvenMerge:
- $\Theta(\log n)$ subsequent steps
- each step executed on $\frac{n}{2}$ processors
- total work: $\Theta(n \log n)$

Complexity of Odd-Even MergeSort:
- requires executions of OddEvenMerge on subarrays of lengths $k = 2, 4, \ldots, n$
- each OddEvenMerge step requires $\Theta(\log k)$ steps
- number of subsequent steps:
 \[
 \log 2 + \log 4 + \cdots + \log n = \Theta((\log n)^2)
 \]
- total work: $\Theta(n(\log n)^2)$