> restart;
with(plots):

\section*{Helper Functions to Draw Hilbert Iterations}

The applied "vertex labelling" algorithm will generate the subsquares of the Hilbert construction as combination of 4 coordinates. Coordinates are represented as a Maple list of 2 elements. Function \texttt{mid4} will return the centre of a subsquare specified by its four corners. Function \texttt{mid2} will return the midpoint between two points, i.e. the centre of the connecting edge.

Function \texttt{attach} will attach a coordinate to a given list of points (for plotting the respective connecting polygonal line). Function \texttt{attachall}, similar to \texttt{attach}, will attach all coordinates specified in the list \texttt{elems}. Function \texttt{mark} attaches a coordinate to the global list points. Function \texttt{markcube} attaches all points required to draw the respective subsquare as a polygonal line.

\begin{verbatim}
mid4 := proc (A::list,B::list,C::list,D::list)
 return (A+B+C+D)/4;
end proc:

mid2 := proc (A::list,B::list)
 return (A+B)/2;
end proc:

attach := proc(li, elem)
 # eval(li) as li might be call-by-reference
 return [op(eval(li)),elem];
end proc:

attachall := proc(li, elems)
 # eval(li) as li might be call-by-reference
 return [op(eval(li)),op(elems)];
end proc:

mark := proc(vertices::list)
 #option trace;
 global points;
 points := attach(points, mid4(op(vertices)));
end proc:

markcube := proc(v1::list,v2::list)
 # option trace;
 global cubes;
 cubes := attachall(cubes, [v1,[v1[1],v2[2]],v2,[v2[1],v1[2]],v1,[v1[1],v2[2]],v2]);
end proc:
\end{verbatim}

\section*{Vertex-Labeling Algorithm for the Hilbert Curve}

The functions \texttt{HilbertVL} and \texttt{Hilbert} implement a vertex-labeling algorithm to draw iterations of the 2D Hilbert curve. \texttt{HilbertVL} takes the desired recursion \texttt{depth} and a list of vertices as parameter; the
The `vertices` list contains the 4 coordinates of the subsquare vertices. Their respective order in the list encodes the orientation of the Hilbert curve within the subsquare. The procedure `Hilbert` will call `HilbertVL` to generate Hilbert iterations of specified depth.

```plaintext
HilbertVL := proc(depth::integer, vertices::list)
  if depth = 0
    then mark(vertices)
  else
    HilbertVL( depth-1,
                [ vertices[1],
                  mid2( vertices[1],vertices[4]),
                  mid4( op( vertices) ),
                  mid2( vertices[1],vertices[2]) ] );
    HilbertVL( depth-1,
                [ mid2( vertices[1],vertices[2]),
                  vertices[2],
                  mid2( vertices[2],vertices[3]),
                  mid4( op( vertices) ) ] );
    HilbertVL( depth-1,
                [ mid4( op( vertices) ),
                  mid2( vertices[2],vertices[3]),
                  vertices[3],
                  mid2( vertices[3],vertices[4]) ] );
    HilbertVL( depth-1,
                [ mid2( vertices[3],vertices[4]),
                  mid4( op( vertices) ),
                  mid2( vertices[1],vertices[4]),
                  vertices[4] ] );
  end;
end proc:

Hilbert := proc(depth::integer)
  global points;
  local unitsquare;
  points := [];
  unitsquare := [[0,0],[0,1],[1,1],[1,0]];
  HilbertVL(depth, unitsquare);
  return points;
end proc:

plot( Hilbert( 6 ),
      scaling=CONSTRAINED, thickness=3, view=[0..1, 0..1]);
```
Adaptive Hilbert Curve

In the following, we will generate a Hilbert order on the cells of an adaptive quadtree. The quadtree is represented via a variant of the bitstream encoding: instead of 0/1 bits to represent whether a quadtree node is an inner node or a leaf, we will apply an integer stream, where each number represents the number of nodes contained in its respective subtree. Hence, 1 represents a leaf node, and 5 would represent a quadtree of height 2 with one inner node and four leaves.

The global variable \texttt{SPACETREE} contains such a list of integers (in depth-first traversal order of the quadtree).

The global variable \texttt{STPTR} points to the currently accessed node in \texttt{SPACETREE}.

Define spacetree representation and stack pointer:

\[\text{SPACETREE} := [5,1,1,1,1] \]
\[\text{STPTR} := 0 \]

> fullTree := proc(depth::integer)
> # generate a full quadtree of given depth
> local ones, zeros, k, ft;
> if depth = 0
> then return [1]
> else
> for k from 1 to 4 do
> ft[k] := fullTree(depth-1);
> end do;
> return [1+add(ft[k][1], k=1..4), seq(op(ft[k]), k=1..4)];
> end if;
> end proc:

> fullTree(2);
\[[21, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1] \]

> fibTree := proc(depth::integer)
> # generates a non-balanced quadtree of given depth
> local ones, zeros, k, ft, dp;
> if depth = 0
> then return [1]
> else
> if depth = 1
> elif depth = 2
> end if;
> for k from 1 to 4 do
> ft[k] := fibTree(dp[k]);
> end do;
> return [1+add(ft[k][1], k=1..4), seq(op(ft[k]), k=1..4)];
> end if;
> end proc:

> fibTree(3);
\[[25, 13, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1] \]
Function \texttt{HilbertChilds} is equivalent to function \texttt{HilbertVL}, but generates an adaptive Hilbert order on the quadtree encoded by the list \texttt{vertices).

\begin{verbatim}
> HilbertChilds := proc(vertices::list)
 global SPACETREE, STPTR;
 STPTR := STPTR + 1;
 if SPACETREE[STPTR] = 1
 then
 mark(vertices);
 markcube(vertices[1], vertices[3]);
 else
 HilbertChilds([vertices[1],
 mid2(vertices[1],vertices[4]),
 mid4(op(vertices)),
 mid2(vertices[1],vertices[2])]);
 HilbertChilds([mid2(vertices[1],vertices[2]),
 vertices[2],
 mid2(vertices[2],vertices[3]),
 mid4(op(vertices))]);
 HilbertChilds([mid4(op(vertices)),
 mid2(vertices[2],vertices[3]),
 vertices[3],
 mid2(vertices[3],vertices[4])]);
 HilbertChilds([mid2(vertices[3],vertices[4]),
 mid4(op(vertices)),
 mid2(vertices[1],vertices[4]),
 vertices[4]]);
 end;
 end proc;
\end{verbatim}

Function \texttt{HilbertQuadTree} calls \texttt{HilbertChilds} to generate the respective Hilbert order:

\begin{verbatim}
> HilbertQuadTree := proc(st::list)
 global points, cubes, SPACETREE, STPTR;
 local unitsquare;
 points := [];
 cubes := [];
 SPACETREE := st;
 STPTR := 0;
 unitsquare := [[0,0],[0,1],[1,1],[1,0]];
 HilbertChilds(unitsquare);
 return points;
end proc:

> HilbertQuadTree(fibTree(5)):
 dispcurv := plot(points,
 scaling=CONSTRAINED, thickness=3, color=red, view=[0.1, 0.1]):
 dispqcube := plot(cubes,
\end{verbatim}
Partitioning

We apply the standard trick of cutting the generated list of Hilbert-iteration vertices into equal-sized sublists.

\[
\text{colours := [black, red, green, yellow, brown, magenta, cyan, navy, pink, grey, blue, khaki, coral];}
\]

\[\text{colours := [black, red, green, yellow, brown, magenta, cyan, navy, pink, grey, blue, khaki, coral]}\]
partition := proc(pts::list, number::posint)
 local parts, i;
 parts := [pts[(number-1)*floor(nops(pts)/number)..-1]];
 for i from number-1 by -1 to 2 do
 parts := [pts[(i-1)*floor(nops(pts)/number)..i*floor(nops(pts)/number)],
 op(parts)];
 end do;
 parts := [pts[1..floor(nops(pts)/number)], op(parts)] ;
 return parts;
end proc:

pts := HilbertQuadTree(fibTree(9)):parts := partition(pts, 11):
plot(parts, axes=BOXED, scaling=CONSTRAINED, thickness=3, color=colours);
Adaptive Hilbert Partition

Function `HilbertPartition` is equivalent to function `HilbertChilds`, but generates only one partition of an adaptive Hilbert order, given by the `first` and `last` index of the respective subsquares.

> `HilbertPartition := proc(vertices::list, first::posint,
last::posint)
 #option trace;
 global SPACETREE,STPTR;
 STPTR := STPTR + 1;
 if (SPACETREE[STPTR] = 1)
 then
 # leaf cell of the quadtree
 if (STPTR >= first) and (STPTR <= last)
 then
 mark(vertices);
 markcube(vertices[1], vertices[3]);
 end if;
 elif (STPTR + SPACETREE[STPTR] < first) or (STPTR > last)
 then
 STPTR := STPTR + SPACETREE[STPTR] - 1; # subtree not in partition
 else
 # expand subtree, if member of the desired partition
 HilbertPartition([vertices[1],
 mid2(vertices[1],vertices[4]),
 mid4(op(vertices)),
 mid2(vertices[1],vertices[2])],
 first, last);
 HilbertPartition([mid2(vertices[1],vertices[2]),
 vertices[2],
 mid2(vertices[2],vertices[3]),
 mid4(op(vertices))], first, last);
 HilbertPartition([mid4(op(vertices)),
 mid2(vertices[2],vertices[3]),
 vertices[3],
 mid2(vertices[3],vertices[4])],
 first, last);
 HilbertPartition([mid2(vertices[3],vertices[4]),
 mid4(op(vertices)),
 mid2(vertices[1],vertices[4]),
 vertices[4]], first, last);
 end if;
 end proc;

Function HilbertQuadPart calls HilbertPartition to generate the respective Hilbert partition:
> HilbertQuadPart := proc(st::list, first::posint,
 last::posint)
global points, cubes, SPACETREE, STPTR;
local unitsquare;
points := [];
cubes := [];
SPACETREE := st;
STPTR := 0;
unitsquare := [[0,0],[0,1],[1,1],[1,0]];
HilbertPartition(unitsquare,first,last);
return points;
end proc:

> HilbertQuadPart(fibTree(5),38,73):
dispcurv := plot(points,
 scaling=CONSTRANDED, thickness=3, color=red, view=
 [0..1, 0..1]):
discube := plot(cubes,
 scaling=CONSTRANDED, thickness=1, color=black, view=
 [0..1, 0..1]):
display(dispcurv,dispcube);