HPC – Algorithms and Applications

Dwarf #2 – Sparse Linear Algebra

Michael Bader
Winter 2012/2013
The Seven Dwarfs of HPC – Dwarf # 2

1. dense linear algebra
2. **sparse linear algebra**
3. spectral methods
4. N-body methods
5. structured grids
6. unstructured grids
7. Monte Carlo
Application Example: Page Rank
Ranking Problem for Websites

- given: \(n \) websites connected by hyperlinks
- wanted: rank websites according to ”importance”
- idea: rank depends on links to a website

Quantitative approach – count the links:

- Graph model:
 websites → nodes, links → edges
- represented as adjacency matrix:
 \(A_{ij} = 1 \) if an edge exists from \(i \) to \(j \), (else \(A_{ij} = 0 \))
- ranking depends on number of edges to \(j \)

\[
r(j) := \sum_{i \neq j} A_{ij} \quad \text{(column sum)}
\]
PageRank

Qualitative approach:
- Goal: links from “important” website have higher impact
- Step 1: add weights (rank) instead of number of links
- Example: page 3 and 4 link to page 2
 \Rightarrow impact x_2 of page 2 is $x_2 = x_3 + x_4$

Modelled by adjacency matrix:
- leads to system of equations:
 $$x_j = \sum_{i \neq j} A_{ij} x_i = \sum_{i \neq j} (A^T)_{ji} x_i$$

- in matrix-vector notation: $x = A^T x$
 (search eigenvector for eigenvalue 1)
PageRank (2)

- Goal: reduce influence of pages with many links
- Step 2: weights divided by number of outgoing links (each website has a "total impact"/sum of weights of 1)
- Example: page 3 (three outgoing links) and 4 (two links) link to page 2
 \[\Rightarrow \text{impact } x_2 \text{ of page 2 is } x_2 = \frac{1}{3} x_3 + \frac{1}{2} x_4 \]

Modelled by adjacency matrix:

- \(n_i \): number of outgoing links of page \(i \); \(n_i = \sum_j A_{ij} \)
- Resulting system of equations:
 \[x_j = \sum_{i \neq j} \frac{1}{n_i} A_{ij} x_i = \sum_{i \neq j} \left(\frac{1}{n_i} (A^T)_{ji} \right) x_i \]
Page-Rank Matrix

- set $B_{ji} := \frac{1}{n_i} (A^T)_{ji}$ → leads to system of equations:

$$x_j = \sum_{i \neq j} \frac{1}{n_i} A_{ij} x_i = \sum_{i \neq j} B_{ji} x_i$$

- search eigenvector for eigenvalue 1: $x = Bx$

Properties of the page-rank matrix:

- all column sums are 1
- all $B_{ji} \geq 0$, diagonal elements $B_{jj} = 0$ (linking to your own page is not counted)
- B is a so-called (left) stochastic matrix
Stochastic Matrices – Properties

Let B be a stochastic matrix, then:

1. B has 1 as eigenvalue;
 all elements of the corresponding eigenvectors $b^{(1)} \geq 0$
 \rightarrow normalise $b^{(1)}$, such that $\sum b_j^{(1)} = 1$

2. element sum of $y = Bx$ is equal to the element sum of x;
 if $x \geq 0$ (element-wise), then also $y \geq 0$

3. v an eigenvector of B with eigenvalue $\neq 1$,
 \Rightarrow element sum of v equal to 0

4. λ eigenvalue of B, then $|\lambda| \leq 1$

(without proofs \rightarrow see a resp. textbook)
Vector Iteration with Stochastic Matrices

- examine iteration \(x^{(m)} = Bx^{(m-1)} \),
 start vector \(x^{(0)} \geq 0 \) has element sum 1
- use eigenvector decomposition of \(x^{(0)} \):
 \[
 x^{(0)} = \sum_j \gamma_j b^{(j)}
 \]
- then: \(x^{(m)} = B^m x^{(0)} = \sum_j \gamma_j \lambda_j^m b^{(j)} \)
- if \(\lambda_1 = 1 \) and all other \(0 < \lambda_j < 1 \), then:
 \[
 x^{(m)} = \sum_j \gamma_j \lambda_j^m b^{(j)} \rightarrow \gamma_1 b^{(1)} \quad \text{for } m \rightarrow \infty
 \]
PageRank in Practice

- Use a start vector \(x^{(0)} \) with element sum 1 (then: \(\gamma_1 = 1 \))
- Vector iteration \(x^{(m)} = Bx^{(m-1)} \) converges to ranking vector \(\gamma_1 b^{(1)} = b^{(1)} \) (with element sum 1)
- As every page has only few outgoing links
 \(\rightarrow B \) a sparse matrix
- \(n \) pages with an average of \(k \) links per page:
 \(\rightarrow kn \) mult/add operations per iteration
- Convergence faster for smaller values of the largest eigenvalue (except \(\lambda_1 = 1 \))
Vector Iteration in Practice

Problem: two separate partitions

- consider the following page-rank matrix:

\[B = \begin{pmatrix} B_I & 0 \\ 0 & B_{II} \end{pmatrix} \]

(web divided into two non-linked partitions)

- \(B_I \) and \(B_{II} \) are stochastic matrices, each with eigenvectors \(b_I \) and \(b_{II} \) for eigenvalue 1

- \((b_I \ b_{II})^T \), but also \((b_I \ 0)^T \) and \((0 \ b_{II})^T \) are eigenvectors of \(B \) (for eigenvalue 1)

- consequences for convergence and ranking?
Vector Iteration in Practice (2)

Problem: slow convergence

• happens, if at least one \(\lambda \approx 1 \) (but \(\neq \lambda_1 = 1 \))

• modify page-rank matrix \(B \):

\[
\tilde{B} \sim \alpha B + (1 - \alpha) \frac{1}{n} \begin{pmatrix}
1 & \ldots & 1 \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{pmatrix}
\]

• new system of equations \(x = \tilde{B}x \),
or: \(x = \alpha Bx + (1 - \alpha) \frac{1}{n} ee^T x \), with \(e = (1, \ldots, 1)^T \)

• equivalent to: \(x - \alpha Bx = (1 - \alpha) \frac{1}{n} ee^T x \)

• \(\frac{1}{n} ee^T \) stochastic, therefore \(\tilde{B} \) a stochastic matrix, as well
Vector Iteration in Practice (3)

Regularisation

• \(x = \tilde{B}x \) iff \(x - \alpha Bx = (1 - \alpha) \frac{1}{n} ee^T x \)

• as \(e^T x = 1 \) (element sum = 1):
 \[
 (I - \alpha B)x = \frac{1}{n}(1 - \alpha)e \quad \text{where } 0 < \alpha < 1
 \]

• eigenvalues of \(\alpha B \) are \(\leq \alpha \)
 \(\Rightarrow (I - \alpha B) \) not singular (all eigenvalues \(\geq 1 - \alpha \))

• leads to unique solution
Vector Iteration in Practice (4)

Convergence

- compute solution via vector iteration:

\[x^{(m)} = \alpha B x^{(m-1)} + (1 - \alpha) \frac{1}{n} e \]

- corresponds to iteration for error vector \(\epsilon^{(m)} = x^{(m)} - x \):

\[\epsilon^{(m)} = \alpha B \epsilon^{(m-1)} \]

- now: all eigenvalues of \(\alpha B \) are \(\leq \alpha \)

- therefore \(\|\epsilon^{(m)}\| \sim \alpha^m \|\epsilon^{(0)}\| \) (convergence faster for smaller \(\alpha \))
Vector Iteration in Practice (5)

Regularisation vs. Convergence:

- Vector iteration converges faster for smaller α
- solution is better, the closer α is to 1 (then $\hat{B} \approx B$)
- task: find an optimal α
 (common page-rank choice: $\alpha = 0.85$)
- regularisation parameter balances between exact solution and “well-behaved” problem
- regularisation therefore a frequent technique for ill-posed problems
PageRank as a Population Model: Random Surfer

- each website “populated” by x_i web surfers
- total population: $\sum x_i = 1$ (normalised)
- population corresponds to page rank: how many surfer are expected to be on each site?

PageRank: “‘Random Surfer’”

- surfers randomly follow a link from the current page (and change to a different website)
- thus: $\frac{1}{n_i} A_{ij} x_i$ surfers change to website j
- regularisation: with probability $(1 - \alpha)$, a surfer will jump to another (random) page in the internet
- vector iteration \rightarrow population evolves towards an equilibrium
A matrix is called sparse, if it contains that many zero elements (i.e., that few non-zeros), such that it becomes worthwhile to change to special data structures and algorithms to store and process them.

(following a definition by Wilkinson)
Coordinate Scheme (aka Triple Scheme)

- store a triple \((a_{ij}, i, j)\) for each non-zero \(a_{ij}\) (not necessarily sorted)
- implementation as “array of struct”:

```c
struct sparseElement {
    int i; int j; int value
};
typedef struct sparseElement[] sparseMatrix;
```

- implementation as \(3 \times K\) matrix (\(K\) non-zeros):

<table>
<thead>
<tr>
<th>(a_{ij})</th>
<th>2.</th>
<th>−1.</th>
<th>−1.</th>
<th>2.</th>
<th>−1</th>
<th>−1.</th>
<th>2.</th>
<th>−1.</th>
<th>−1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(j)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- used, for example, in Matlab, or as input format
Compressed Row Storage (CRS)

- two arrays of size K with a_{ij} and j:

 $a[k]$: 2. -1. -1. 2. -1 -1. 2. -1. -1. 2.
 $j[k]$: 1 2 1 2 3 2 3 4 3 4

 (sorted by increasing row)

- third array points to start of a row in $a[k]$:

 start[i]: 0 2 5 8 10

- implementation of sparse-matrix-vector mult. (SpMV):

  ```
  for (i=0; i<n; i++) {
    for (k=start[i]; k<start[i+1]; k++)
      y[i] += a[k] * x[j[k]];
  }
  ```
Variants of CRS

Compressed Column Storage (CCS)

- same as CRS, but with rows and columns exchanged
- used in Harwell-Boeing / Rutherford Boeing collection

Gustavson: Combine CRS and CCS

- compressed row storage format plus:
 - column starts (start[j]) and row indices i[k] as in CCS
 - improves column-wise access to sparse matrices

Block CRS

- store small matrix blocks (e.g.: 2×2, 4×4) instead of single elements
- improves exploitation of SIMD capabilities of CPUs
Incremental CRS

- use \(\tilde{j} = (i - 1) \cdot n + (j - 1) \) as element index
- store increments of \(\tilde{j} \) in array inc[k]

<table>
<thead>
<tr>
<th>a[k]</th>
<th>2.</th>
<th>-1.</th>
<th>-1.</th>
<th>2.</th>
<th>-1</th>
<th>-1.</th>
<th>2.</th>
<th>-1</th>
<th>-1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc[k]</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(\tilde{j})[k]</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

- implementation of sparse-matrix-vector mult. (SpMV):

  ```
  for(k=0,i=0, jj =inc[0]; i<n; i += j/n)
  for(j = j%n; j<n; j+=inc[k], k++)
  y[i] += a[k] * x[j];
  ```

- C impl. of SpMV found to be faster than for CRS (Bisseling)
- avoids array start[i] (esp. attractive, if \(K < n \))
ELLPACK Format – Rectangular Storage

- scenario: at most k_{max} non-zeros per row
- store values in $n \times k_{\text{max}}$ matrix/array a_{ik}
- store column indices in $n \times k_{\text{max}}$ matrix/array j_{ik}

$$a_{ik}: \begin{pmatrix} 2. & -1. & 0 \\ -1. & 2. & -1 \\ -1. & 2. & -1 \\ -1. & 2. & 0 \end{pmatrix} \quad j_{ik}: \begin{pmatrix} 1 & 2 & * \\ 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & * \end{pmatrix}$$

- very regular data structure
- supports vectorisation
ELLPACK Format – SpMV Implementation

- row-oriented implementation:

 \[
 \text{for}\,(i=0;\,i<n;\,i++) \\
 \quad \text{for}\,(k=0;\,k<kmax;\,k++) \\
 \quad y[i] \,+= \,a[i][k] \,* \,x[j[i][k]];
 \]

- column-oriented implementation:

 \[
 \text{for}\,(k=0;\,k<kmax;\,k++) \\
 \quad \text{for}\,(i=0;\,i<n;\,i++) \\
 \quad y[i] \,+= \,a[i][k] \,* \,x[j[i][k]];
 \]

 → second for-loop leads to vector access to \(y, a \) and \(j \)
Jagged Diagonal Storage (JDS)

- sort rows according to number of non-zeros
- consider matrices a_{ik} and j_{ik} as in ELLPACK
- store a_{ik} and j_{ik} sequentially and in column-major order
- but do not store a_{ik}, j_{ik} for zero elements
 ⇒ requires additional array start[k] (start of k-th column)
- SpMV implementation (column-oriented):

  ```
  for (k=0; k<kmax; k++)
    for (i=0; i<(start[k+1]−start[k]); i++)
      y[i] += a[start[k]+i] * x[j[start[k]+i]];
  ```
Rob H. Bisseling:
*Parallel Scientific Computing –
A structured approach using BSP and MPI.*