Table of Contents

Compressed Sparse Row (CSR) Kernels
 Scalar kernel
 Vectorized kernel

Assignments
 PageRank

ELLPACK Kernel
Optimization of the SWE code

- Performance analysis
- Using shared memory and parallel reduction for speedup
- Further optimization technique: kernel fusion

Further extensions to SWE

- Hybrid parallelization
- ASAGI, OpenGL visualization
Assignment 1

Task: Coalesced memory access

• Switch indices:

\[
\begin{align*}
 l_{\text{cellIndexI}} &= \text{blockDim.y} \times \text{blockIdx.x} + \text{threadIdx.y} + 1; \\
 l_{\text{cellIndexJ}} &= \text{blockDim.x} \times \text{blockIdx.y} + \text{threadIdx.x} + 1;
\end{align*}
\]

• Adapt block size:

\[
\begin{align*}
 \text{dim3} & \quad \text{dimBlock(TILE_SIZE, TILE_SIZE);} \\
 \text{dim3} & \quad \text{dimGrid(nx/TILE_SIZE, ny/TILE_SIZE);} \\
 \text{dim3} & \quad \text{dimRightBlock(TILE_SIZE, 1);} \\
 \text{dim3} & \quad \text{dimRightGrid(1, ny/TILE_SIZE);} \\
 \text{dim3} & \quad \text{dimTopBlock(1, TILE_SIZE);} \\
 \text{dim3} & \quad \text{dimTopGrid(nx/TILE_SIZE, 1);}
\end{align*}
\]
Assignment 2

Task: Access state vector via shared memory

- Load state vector for each cell (hu, hv and b likewise)

```c
s_h[threadIdx.y + 1][threadIdx.x + 1] = i_h[l_rightCellPosition];

if (threadIdx.x == 0) {
    l_leftCellPosition = computeOneDPositionKernel(
        l_cellIndexI, l_cellIndexJ-1, i_nY+2);
    s_h[threadIdx.y + 1][0] = i_h[l_leftCellPosition];
}

if (threadIdx.y == 0) {
    l_leftCellPosition = computeOneDPositionKernel(
        l_cellIndexI-1, l_cellIndexJ, i_nY+2);
    s_h[0][threadIdx.x + 1] = i_h[l_leftCellPosition];
}
```
Task: Access state vector via shared memory

- Compute horizontal net updates

```c
fWaveComputeNetUpdates(
    9.81,
    s_h[threadIdx.y] [threadIdx.x + 1],
    s_h[threadIdx.y + 1] [threadIdx.x + 1],
    s_hu[threadIdx.y] [threadIdx.x + 1],
    s_hu[threadIdx.y + 1] [threadIdx.x + 1],
    s_b[threadIdx.y] [threadIdx.x + 1],
    s_b[threadIdx.y + 1] [threadIdx.x + 1],
    l_netUpdates
);
```
Assignment 2

Task: Access state vector via shared memory

- Compute vertical net updates

```c
fWaveComputeNetUpdates(
  9.81,
  s_h [threadIdx.y + 1] [threadIdx.x],
  s_h [threadIdx.y + 1] [threadIdx.x + 1],
  s_hv [threadIdx.y + 1] [threadIdx.x],
  s_hv [threadIdx.y + 1] [threadIdx.x + 1],
  s_b [threadIdx.y + 1] [threadIdx.x],
  s_b [threadIdx.y + 1] [threadIdx.x + 1],
  l_netUpdates
);
```
Compressed Sparse Row (CSR)

CSR matrix-vector multiplication:

```c
const int N; // number of matrix rows
const int K; // number of nonzero matrix entries
float a[K]; // array of nonzero matrix entries
float j[K]; // array of column indices
float start[N+1]; // array of row start indices
float x[N]; // input vector x
float y[N]; // result vector y

for(int i = 0; i < N; i++) {
    y[i] = 0;

    for(k = start[i]; k < start[i + 1]; k++) {
        y[i] += a[k] * x[j[k]];
    }
}
```
Compressed Sparse Row (CSR) Kernel 1

First straightforward approach: each thread does a row \times vector multiplication

```
__global__ void csr_matvec_s(ptr, indices, data, x, y) {
    int row = blockDim.x * blockIdx.x + threadIdx.x;
    if (row < num_rows) {
        float dot = 0;
        int row_start = ptr[row];
        int row_end = ptr[row + 1];

        for (int jj = row_start; jj < row_end; jj++) {
            dot += data[jj] * x[indices[jj]];
        }
        y[row] += dot;
    }
}
```
Compressed Sparse Row (CSR) Kernel 1 (cont.)

Observations:
- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly
- non-coalesced memory access to indices and data, coalesced access to y
- non-uniform distribution of nonzeros may lead to serialization

Example data:

```
ptr        [0 2 4 7 9]
```

Access pattern to indices and data by row / thread ID (0-3):

```
jj = row_start  [0  1  2  3  ]
jj = row_start + 1 [ 0  1  2  3]
jj = row_start + 2 [      2  ]
```
Compressed Sparse Row (CSR) Kernel 1 (cont.)

Observations:
- contiguous, fully compressed storage of column and value vectors
- \(x \) is accessed randomly

Example data:

\[
\begin{array}{c}
\text{ptr} \\
[0 \ 2 \ 4 \ 7 \ 9]
\end{array}
\]

Access pattern to indices and data by row / thread ID (0-3):

\[
\begin{align*}
jj &= \text{row_start} \\
&= [0 \ 1 \ 2 \ 3] \\
nj &= \text{row_start} + 1 \\
&= [0 \ 1 \ 2 \ 3] \\
nj &= \text{row_start} + 2 \\
&= [0 \ 1 \ 2]
\end{align*}
\]
Compressed Sparse Row (CSR) Kernel 1 (cont.)

Observations:

- contiguous, fully compressed storage of column and value vectors
- \(x \) is accessed randomly
- **non-coalesced** memory access to indices and data, **coalesced** access to \(y \)

Example data:

\[
\text{ptr} \quad [0 \ 2 \ 4 \ 7 \ 9]
\]

Access pattern to indices and data by row / thread ID (0-3):

- \(jj = \text{row}_\text{start} \) \([0 \ 1 \ 2 \ 3] \)
- \(jj = \text{row}_\text{start} + 1 \) \([0 \ 1 \ 2 \ 3] \)
- \(jj = \text{row}_\text{start} + 2 \) \([_ \ 2 _] \)
Compressed Sparse Row (CSR) Kernel 1 (cont.)

Observations:
- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly
- **non-coalesced** memory access to indices and data, **coalesced** access to y
- non-uniform distribution of nonzeros may lead to serialization

Example data:

$$
\text{ptr} \quad [0 \ 2 \ 4 \ 7 \ 9]
$$

Access pattern to indices and data by row / thread ID (0-3):

$$
n_j = \text{row}_\text{start} \quad [0 \ 1 \ 2 \ 3] \\
n_j = \text{row}_\text{start} + 1 \quad [0 \ 1 \ 2 \ 3] \\
n_j = \text{row}_\text{start} + 2 \quad [\ \ 2 \]
$$
Compressed Sparse Row (CSR) Kernel 2

Idea: each warp does a row × vector multiplication.

Requires the following steps:

- For each block: allocate a shared array vals[] for the results
- For each thread in a warp: find warp id (row) and warp-local thread-id (lane)
- For each thread in a warp: do CSR loop for row row with offset lane and stride WARP_SIZE
- For each warp: reduce vals[] to entry y[row]
Compressed Sparse Row (CSR) Kernel 2 - setup

```c
__global__ void csr_matvec_v(ptr, indices, data, x, y) {
    __shared__ float vals[TILE_SIZE];

    int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
    int warp_id = thread_id / WARP_SIZE;
    int lane = thread_id & (WARP_SIZE - 1);
    int row = warp_id;

    if (row < num_rows) {
        int row_start = ptr[row];
        int row_end = ptr[row + 1];

        // (cont.)
    }
```
// (cont.)

// compute running sum per thread
vals[threadIdx.x] = 0;

for (int jj = row_start + lane; jj < row_end; jj += WARP_SIZE) {
 vals[threadIdx.x] += data[jj] * x[indices[jj]];
}

// (cont.)
Compressed Sparse Row (CSR) Kernel 2 - reduce

// (cont.)

// parallel reduction in shared memory
for (int d = WARP_SIZE >> 1; d >= 1; d >>= 1) {
 if (lane < d) vals[threadIdx.x] += vals[threadIdx.x + d];
}

// first thread in a warp writes the result
if (lane == 0) {
 y[row] += vals[threadIdx.x];
}
}
Compressed Sparse Row (CSR) Kernel 2 (cont.)

Observations:

- contiguous, fully compressed storage of column and value vectors
- \(x \) is accessed randomly
- partially coalesced memory access to indices, data and vals
- non-coalesced (but also rare) memory access to \(y \)
- non-uniform distribution of nonzeros is handled to some degree
- what about diagonal matrices?

Example data:

\[
\text{ptr} = [0 \ 2 \ 4 \ 7 \ 9]
\]

Access pattern to indices and data by row / warp ID (0-3):

\[
\text{jj} = \text{row}_\text{start} + \text{lane} = [0 \ 0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3]
\]
Compressed Sparse Row (CSR) Kernel 2 (cont.)

Observations:
- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly

Example data:

```
ptr [0 2 4 7 9]
```

Access pattern to indices and data by row / warp ID (0-3):

```
jj = row_start + lane
jj [0 0 1 1 2 2 2 3 3]
```
Compressed Sparse Row (CSR) Kernel 2 (cont.)

Observations:

• contiguous, fully compressed storage of column and value vectors
• x is accessed randomly
• partially coalesced memory access to indices, data and vals

Example data:

ptr $\begin{bmatrix} 0 & 2 & 4 & 7 & 9 \end{bmatrix}$

Access pattern to indices and data by row / warp ID (0-3):

$jj = \text{row}_\text{start} + \text{lane}$

$\begin{bmatrix} 0 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \end{bmatrix}$
Compressed Sparse Row (CSR) Kernel 2 (cont.)

Observations:

- contiguous, fully compressed storage of column and value vectors
- \(x \) is accessed randomly
- **partially coalesced** memory access to indices, data and vals
- non-coalesced (but also rare) memory access to \(y \)

Example data:

\[
\text{ptr} \quad [0 \ 2 \ 4 \ 7 \ 9]
\]

Access pattern to indices and data by row / warp ID (0-3):

\[
\text{jj} = \text{row}_\text{start} + \text{lane} \quad [0 \ 0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3]
\]
Compressed Sparse Row (CSR) Kernel 2 (cont.)

Observations:
- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly
- **partially coalesced** memory access to indices, data and vals
- non-coalesced (but also rare) memory access to y
- non-uniform distribution of nonzeros is handled to some degree

Example data:

\[
\text{ptr} = [0 \ 2 \ 4 \ 7 \ 9]
\]

Access pattern to indices and data by row / warp ID (0-3):

\[
jj = \text{row_start} + \text{lane} = [0 \ 0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3]
\]
Compressed Sparse Row (CSR) Kernel 2 (cont.)

Observations:
- contiguous, fully compressed storage of column and value vectors
- \(x \) is accessed randomly
- partially coalesced memory access to indices, data and vals
- non-coalesced (but also rare) memory access to \(y \)
- non-uniform distribution of nonzeros is handled to some degree
- what about diagonal matrices?

Example data:

\[
\text{ptr} \quad [0 \ 2 \ 4 \ 7 \ 9]
\]

Access pattern to indices and data by row / warp ID (0-3):

\[
\text{jj} = \text{row}_\text{start} + \text{lane} \quad [0 \ 0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3 \ 3]
\]
Assignment: PageRank

PageRank algorithm:

Let \(B \in \mathbb{R}^{n \times n} \) be non-negative, \(\alpha \in (0, 1) \). We assume \(B \) is left stochastic - otherwise apply step a of the algorithm.

Goal: Find \(x \in [0, 1]^n \) with \(x = Bx \).

a) if \(B \) is not left stochastic: divide each entry in \(B \) by its column sum.
 If a 0-column exists, abort. Otherwise set \(B \) to the resulting matrix.

b) initialize solution vector: \(x \leftarrow \frac{1}{n} e \), where \(e = (1, 1, 1, ...)^T \)

c) multiply matrix with vector: \(y \leftarrow Bx \)

d) regularize: \(x \leftarrow \alpha y + (1 - \alpha) \frac{1}{n} e \)

e) while error criterion is not fulfilled, back to step c
Assignment: PageRank

Assignments:

1. Load M (matrix market format) matrix from disk (e.g. `flickr.mtx`) from http://www.cise.ufl.edu/research/sparse/MM/Gleich/flickr.tar.gz
2. Implement scalar CSR kernel and try it on a small matrix first (`my.mtx`) next, try with bigger matrices
3. Implement vectorized CSR kernel, compare performance results for different matrices. What do you observe?
Literature

Nathan Bell and Michael Garland
Efficient Sparse Matrix-Vector Multiplication on CUDA.
2008.