Further topics on SWE and CUDA

Oliver Meister
December 13th 2012
Last Tutorial

The Shallow Water Equations

- hyperbolic equation
- Finite Volume discretization
- Cartesian grid partitioned into blocks with ghost layers

SWE Code

- Euler time step:
 - set boundary conditions
 - compute net updates
 - set time step size
 - update cell unknowns
- parallelization concepts
- CUDA: Synchronization, kernel calls, kernels
Assignment 1

computeNetUpdatesKernel main call:

dim3 dimBlock(TILE_SIZE, TILE_SIZE);
dim3 dimGrid(nx/TILE_SIZE, ny/TILE_SIZE);

computeNetUpdatesKernel<<<dimGrid,dimBlock>>>(
 hd, hud, hvd, bd,
 hNetUpdatesLeftD, hNetUpdatesRightD,
 huNetUpdatesLeftD, huNetUpdatesRightD,
 hNetUpdatesBelowD, hNetUpdatesAboveD,
 hvNetUpdatesBelowD, hvNetUpdatesAboveD,
 l_maximumWaveSpeedsD, nx,ny
);
Assignment 1

computeNetUpdatesKernel right edges call:

dim3 dimRightBlock(1, TILE_SIZE);
dim3 dimRightGrid(1, ny/TILE_SIZE);

computeNetUpdatesKernel<<<dimRightGrid, dimRightBlock>>>(
 hd, hud, hvd, bd,
 hNetUpdatesLeftD, hNetUpdatesRightD,
 huNetUpdatesLeftD, huNetUpdatesRightD,
 hNetUpdatesBelowD, hNetUpdatesAboveD,
 hvNetUpdatesBelowD, hvNetUpdatesAboveD,
 l_maximumWaveSpeedsD, nx, ny,
 nx, 0, dimGrid.x, 0
);
Assignment 1

`computeNetUpdatesKernel top edges call:`

```c
dim3 dimTopBlock(TILE_SIZE, 1);
dim3 dimTopGrid(nx/TILE_SIZE, 1);

computeNetUpdatesKernel<<<dimTopGrid, dimTopBlock>>>(
    hd, hud, hvd, bd,
    hNetUpdatesLeftD, hNetUpdatesRightD,
    huNetUpdatesLeftD, huNetUpdatesRightD,
    hNetUpdatesBelowD, hNetUpdatesAboveD,
    hvNetUpdatesBelowD, hvNetUpdatesAboveD,
    l_maximumWaveSpeedsD, nx, ny,
    0, ny, 0, dimGrid.y
);
```
Assignment 2

computeNetUpdatesKernel:

\[i = i_{\text{offsetX}} + \text{blockDim}.x \times \text{blockIdx}.x + \text{threadIdx}.x + 1; \]
\[j = i_{\text{offsetY}} + \text{blockDim}.y \times \text{blockIdx}.y + \text{threadIdx}.y + 1; \]
Assignment 2

computeNetUpdatesKernel vertical edges:

\[
\begin{align*}
\text{lpos} &= \text{computeOneDPositionKernel}(i-1, j, i_nY+2); \\
\text{rpos} &= \text{computeOneDPositionKernel}(i, j, i_nY+2);
\end{align*}
\]

// compute the net-updates
fWaveComputeNetUpdates(9.81, i_h[lpos], i_h[rpos],
 i_hu[lpos], i_hu[rpos], i_b[lpos], i_b[rpos], l_netUpdates);

// compute the location of the net-updates
 updPos = computeOneDPositionKernel(i-1, j, i_nY+1);

// store the horizontal net-updates
 o_hNetUpdatesLeftD[updPos] = l_netUpdates[0];
 o_hNetUpdatesRightD[updPos] = l_netUpdates[1];
 o_huNetUpdatesLeftD[updPos] = l_netUpdates[2];
 o_huNetUpdatesRightD[updPos] = l_netUpdates[3];
Assignment 2

computeNetUpdatesKernel horizontal edges:

\[
\text{bpos} = \text{computeOneDPositionKernel}(i, j-1, i_{nY}+2); \\
\text{apos} = \text{computeOneDPositionKernel}(i, j, i_{nY}+2);
\]

// compute the net-updates
\text{fWaveComputeNetUpdates}(9.81, i_{h[bpos]}, i_{h[apos]}, \\
(i_{hv[bpos]}, i_{hv[apos]}, i_{b[bpos]}, i_{b[apos]}, l_{netUpdates});
\]

// compute the location of the net-updates
\text{updPos} = \text{computeOneDPositionKernel}(i, j-1, i_{nY}+1);

// store the vertical net-updates
\text{o_hNetUpdatesBelowD[updPos]} = l_{netUpdates}[0]; \\
\text{o_hNetUpdatesAboveD[updPos]} = l_{netUpdates}[1]; \\
\text{o_hvNetUpdatesBelowD[updPos]} = l_{netUpdates}[2]; \\
\text{o_hvNetUpdatesAboveD[updPos]} = l_{netUpdates}[3];
Assignment 1

updateUnknownsKernel call:

```c
dim3 dimBlock(TILE_SIZE, TILE_SIZE);
dim3 dimGrid(nx/TILE_SIZE, ny/TILE_SIZE);

// compute the update width.
float l_updateWidthX = i_deltaT / dx;
float l_updateWidthY = i_deltaT / dy;

// update the unknowns (global time step)
updateUnknownsKernel<<<dimGrid, dimBlock>>>(
    hNetUpdatesLeftD, hNetUpdatesRightD,
    huNetUpdatesLeftD, huNetUpdatesRightD,
    hNetUpdatesBelowD, hNetUpdatesAboveD,
    hvNetUpdatesBelowD, hvNetUpdatesAboveD,
    hd, hud, hvd, l_updateWidthX, l_updateWidthY,
    nx, ny);
```
Assignment 2

updateUnknownsKernel:

\[
\begin{align*}
i &= \text{blockDim.x} \times \text{blockIdx.x} + \text{threadIdx.x} + 1; \\
j &= \text{blockDim.y} \times \text{blockIdx.y} + \text{threadIdx.y} + 1;
\end{align*}
\]

// compute the global cell position

cellPos = computeOneDPositionKernel(i, j, i_nY+2);

rPos = computeOneDPositionKernel(i-1, j, i_nY+1);
lPos = computeOneDPositionKernel(i, j, i_nY+1);
aPos = computeOneDPositionKernel(i, j-1, i_nY+1);
bPos = computeOneDPositionKernel(i, j, i_nY+1);

/* cont. */
Assignment 2

updateUnknownsKernel:

/* cont. */

// update the cell values: water height and momentum
io_h[cellPos] -= i_updateWidthX *
 (i_hNetUpdatesRightD[rPos] + i_hNetUpdatesLeftD[lPos])
 + i_updateWidthY *
 (i_hNetUpdatesAboveD[aPos] + i_hNetUpdatesBelowD[bPos]);

io_hu[cellPos] =
 i_updateWidthX *
 (i_huNetUpdatesRightD[rPos] + i_huNetUpdatesLeftD[lPos]);

io_hv[cellPos] =
 i_updateWidthY *
 (i_hvNetUpdatesAboveD[aPos] + i_hvNetUpdatesBelowD[bPos]);
Optimization of the SWE-CUDA Kernels

Fermi Memory Hierarchy

- Shared Memory
- L1 Cache
- L2 Cache
- DRAM

image: NVIDIA

Working with hundreds of GPU computing applications from various industries, we learned that while Shared memory benefits many problems, it is not appropriate for all problems. Some algorithms map naturally to Shared memory, others require a cache, while others require a combination of both. The optimal memory hierarchy should offer the benefits of both Shared memory and cache, and allow the programmer a choice over its partitioning. The Fermi memory hierarchy adapts to both types of program behavior.

Adding a true cache hierarchy for load / store operations presented significant challenges. Traditional GPU architectures support a read-only ''load'' path for texture operations and a write-only ''export'' path for pixel data output. However, this approach is poorly suited to executing general purpose C or C++ thread programs that expect reads and writes to be ordered. As one example: spilling a register operand to memory and then reading it back creates a read after write hazard; if the read and write paths are separate, it may be necessary to explicitly flush the entire write / ''export'' path before it is safe to issue the read, and any caches on the read path would not be coherent with respect to the write data.

The Fermi architecture addresses this challenge by implementing a single unified memory request path for loads and stores, with an L1 cache per SM multiprocessor and unified L2 cache that services all operations (load, store and texture). The per-SM L1 cache is configurable to support both shared memory and caching of local and global memory operations. The 64 KB memory can be configured as either 48 KB of Shared memory with 16 KB of L1 cache, or 16 KB of Shared memory with 48 KB of L1 cache. When configured with 48 KB of shared memory, programs that make extensive use of shared memory (such as electrodynamic simulations) can perform up to three times faster. For programs whose memory accesses are not known beforehand, the 48 KB L1 cache configuration offers greatly improved performance over direct access to DRAM.
SWE-CUDA – Memory-Bound Performance

A performance estimate for SWE:

- assumption: performance is memory-bound
- presentation laptop has a bandwidth (GPU main memory) of 9.6 GB/s
- what is the best possible performance of the SWE code?

Memory transfer in SWE:

- consider mesh of size 256×256, thus 65.6 k cells
- variables h, hu, hv, b: 4×4 bytes, thus 1 MiB
- net updates: $2 \times 2 \times 4$ bytes per edge, thus 2 MiB
- how many read & write accesses in each kernel?
SWE-CUDA – Memory-Bound Performance (2)

Memory accesses in computeNetUpdates:

- read variables h, hu, hv, b: 1 MiB
- write netUpdates: 2 MiB

Memory accesses in updateUnknowns:

- read netUpdates: 2 MiB
- write variables h, hu, hv: 786 kiB

Total memory transfer:

- neglect computation of maximum wave speed
- read 3 MiB, write 2.75 MiB per time step
- Estimated timesteps per second: $9.6 \text{ GB/s} \div 3 \text{ MiB} \approx 3000\frac{1}{s}$
- Measured timesteps per second: $386\frac{1}{s}$
Road blocks for memory-bound performance:

- assumed that each kernels reads/writes any piece of data only once
- currently not the case for read accesses

Read accesses in computeNetUpdates:

- each kernel reads h, hu, hv, b from 3 cells
 → triples number of read accesses
- new value: read 5 MiB, write 2.75 MiB per time step
 → 9.6 GB/s ÷ 5 MiB ≈ 1800 time steps per sec.?

Read accesses in updateUnknowns:

- actually no extra read or write accesses
CUDA Parallelization – Level 2

Optimization of kernels:

- coalesced access to GPU memory
- use of shared memory and registers

```c
__shared__ float Fds[TILE_SIZE+1][TILE_SIZE+1];
__shared__ float Gds[TILE_SIZE+1][TILE_SIZE+1];
/* ... */
int iEdge = getEdgeCoord(i,j,ny); // index of right/top Edge
Fds[tx+1][ty] = Fhd[iEdge];
Gds[tx][ty+1] = Ghd[iEdge];
/* ... */

h = hd[iElem] - dt *( (Fds[tx+1][ty]-Fds[tx][ty])*dxi
       +(Gds[tx][ty+1]-Gds[tx][ty])*dyi );
```

_(in file SWE_RusanovBlockCUDA_kernels.cu)_
Maximum Wave Speeds
Parallel Reduction Revisited

Computation of “Net Updates”:

- kernel computes wave speeds for every edge/cell
- also required to compute the CFL condition
 → parallel maximum computation required

Optimization approach:

- keep wave speeds in shared memory
- compute maximum wave speed of a tile in shared memory
- subsequent parallel reduction only on tile-maxima
Some Aspects of CUDA Parallelization

Level 3: more advanced optimizations

- “kernel fusion”: merge computation of fluxes with updates of unknowns
- merge maximum-reduction on wave speeds (for CFL condition) with flux computation (or update of velocities)
- allows interactive/“real-time” simulation (800×800 cells)
Net Updates and Updating Unknowns
Parallel Programming Patterns Revisited

Anticipate new parallel program:

For each cell in parallel(!) compute:

1. net updates for all edges (vertical & horizontal)
2. update cell unknowns from net updates

Parallel access to memory:

1. concurrent read to h, hu, hv; exclusive write to net updates
2. concurrent read to net updates; exclusive write to h, hu, hv

⇒ 2 after 1 for all cells, so everything is fine?
Anticipate new parallel program:

For each cell in parallel(!) compute:

1. net updates for all edges (vertical & horizontal)
2. update cell unknowns from net updates

Parallel access to memory:

1. concurrent read to h, hu, hv; exclusive write to net updates
2. concurrent read to net updates; exclusive write to h, hu, hv

⇒ 2 after 1 for all cells, so everything is fine?
⇒ unfortunately not! (consider CUDA blocks, warps, etc.)
Anticipate new parallel program:

For each cell in parallel(!) compute:

1. net updates for all edges (vertical & horizontal)
2. update cell unknowns from net updates
 write to next-timestep copies of h, hu, hv!

Parallel access to memory:

1. concurrent read to h, hu, hv; exclusive write to net updates
2. concurrent read to net updates; exclusive write to h, hu, hv
 ⇒ 2 after 1 for all cells, so everything is fine?
 ⇒ unfortunately not! (consider CUDA blocks, warps, etc.)
 ⇒ may be cured: old/new copy for h, hu, hv
1. Improve the `computeNetUpdates` kernel by using shared memory access to read the cell data.

2. Optimize the kernel for coalesced memory access, use the Nvidia profiler to check for warp serialization

3. (Optional) Implement a binary fan-in into the kernel, in order to reduce the maximum wave speeds for each block to a single value (reduce over all blocks is already integrated via `thrust`)
Performance Contest

SWE on a Tesla C2070 (mathgpu)

- 448 stream processing units
- memory bandwidth: 97.6 GB/s (acc. to bandwidth test)
- theoretical peak performance: ≈ 1 TFlop/s

How much do you get?

- in terms of memory throughput?
- in terms of Flop/s?
- in terms of processed cells per second?
Teil II

Parallelization on Hybrid Architectures
Exchange of Values in Ghost/Copy Layers

Straightforward Approach:

- boundary conditions OUTFLOW, WALL vs. CONNECT or PARALLEL
- disadvantage: method `setGhostLayer()` needs to be implemented for each derived class
Exchange of Values in Ghost/Copy Layers (2)

Implemented via Proxy Objects:

- `grabGhostLayer()` to write into ghost layer
- `registerCopyLayer()` to read from copy layer
- return proxy object (class `SWE_Block1D`) that references one row/column of the grid
SWE_BlockCUDA – Update of Ghost Layers
Memory-Synchronization Revisited

- ghost layers might be updated in each time step → conditions PASSIVE, CONNECT
- updated ghost layers in CPU memory need to be copied to GPU

```c
void SWE_BlockCUDA::synchGhostLayerAfterWrite() {
    if (boundary[BND_LEFT] == PASSIVE || boundary[BND_LEFT] == CONNECT) {
        // transfer h, hu, hv from left ghost layer to resp. dev
        cudaMemcpy(hd, h[0], (ny+2)*sizeof(float), cudaMemcpyHostToDevice);
        cudaMemcpy(hud, hud[0], (ny+2)*sizeof(float), cudaMemcpyHostToDevice);
        cudaMemcpy(hvd, hvd[0], (ny+2)*sizeof(float), cudaMemcpyHostToDevice);
    }
}
```

(in file SWE_BlockCUDA.cu)
SWE_BlockCUDA – Update of Copy Layers

Memory-Synchronization Revisited

- copy layers need to be updated in each time step
 → conditions PASSIVE, CONNECT
- requires transfer from GPU to CPU memory

```c
void SWE_BlockCUDA::synchCopyLayerBeforeRead() {
    /*-- left and right copy layer skipped --*/
    int size = 3*(nx+2);
    // bottom copy layer
    if (... || boundary[BND_BOTTOM] == CONNECT) {
        dim3 dimBlock(TILE_SIZE,1);
        dim3 dimGrid(nx/TILE_SIZE,1);
        kernelBottomCopyLayer<<<dimGrid,dimBlock>>>(
            hd, hud, hvd, bottomLayerDevice+size, nx, ny);
        cudaMemcpy(bottomLayer+size, bottomLayerDevice+size,
                    size*sizeof(float), cudaMemcpyDeviceToHost);
    }
    /*-- ... --*/
}(in file SWE_BlockCUDA.cu)
```

Oliver Meister: Further topics on SWE and CUDA

Tutorial Parallel Programming and High Performance Computing, December 13th 2012
MPI Parallelization
– Exchange of Ghost/Copy Layers

SWE_Block1D* leftInflow = splash.grabGhostLayer(BND_LEFT);
SWE_Block1D* leftOutflow = splash.registerCopyLayer(BND_LEFT);

SWE_Block1D* rightInflow = splash.grabGhostLayer(BND_RIGHT);
SWE_Block1D* rightOutflow = splash.registerCopyLayer(BND_RIGHT);

MPI_Sendrecv(leftOutflow->h.elemVector(), 1, MPI_COL, leftRank, 1,
rightInflow->h.elemVector(), 1, MPI_COL, rightRank, MPI_COMM_WORLD,&status);

MPI_Sendrecv(rightOutflow->h.elemVector(), 1, MPI_COL, rightRank, 4,
leftInflow->h.elemVector(), 1, MPI_COL, leftRank, 4,
MPI_COMM_WORLD,&status);

(cmp. file examples/swe_mpi.cpp)
Teaching Parallel Programming with SWE

SWE in Lectures, Tutorials, Lab Courses:

- non-trivial example, but model & implementation easy to grasp
- allows different parallel programming models (MPI, OpenMP, CUDA, Intel TBB/ArBB, OpenCL, …)
- prepared for hybrid parallelisation

Some Extensions:

- ASAGI - parallel server for geoinformation (S. Rettenberger, Master’s thesis)
- OpenGL real-time visualisation of results (T. Schnabel, student project)

→ http://www5.in.tum.de/SWE/ → https://github.com/TUM-I5
References/Literature