HPC – Algorithms and Applications

Dwarf #6 – Unstructured Grids

Michael Bader

Winter 2012/2013
Dwarf #6 – Unstructured Grids

1. dense linear algebra
2. sparse linear algebra
3. spectral methods
4. N-body methods
5. structured grids
6. unstructured grids
7. Monte Carlo
Unstructured Grids – Characterisation

- (almost) no restrictions on grid generation, maximum flexibility
- explicit storage of basic geometric and topological information → usually complicated data structures
Example: Delaunay Triangulation

- assume: grid points are already given
- to do: generate triangular grid cells
- satisfy Delaunay property: circumcircle of any grid triangle does not contain other grid vertices
- leads to triangles with favourable properties: avoid acute/obtuse angles
- related to Voronoi diagrams (next slide)
- widespread (computer graphics, meshes for Finite Element methods, etc.)
Delaunay Triangulation and Voronoi Diagrams

Algorithm
1. Voronoi region around each given grid point:
 \[V_i = \{ P : \| P - P_i \| < \| P - P_j \| \text{ } \forall j \neq i \} \]
2. connect points from adjacent Voronoi regions
3. leads to set of disjoint triangles (tetrahedra in 3D)
Example: Advancing Front Methods

- approach to generate both grid points and grid cells
- advance a *front* step-by-step towards interior
- starting from the boundary (*starting front*)
Advancing Front Methods (2)

Algorithm:
1. choose an edge on the current front, say PQ
2. create a new point R at equal distance d from P and Q
3. determine all grid points lying within a circle around R, radius r
4. order these points w.r.t. distance from R
5. for all points, form triangles with P and Q; select one of these triangles
6. add triangle to grid (unless: intersections, . . .)
7. update triangulation and front line: add new cell, update edges
Partitioning Unstructured Grids

Partitioning problem:

- divide grid into K partitions
- with uniform computational load
 \rightarrow usually: partitions of equal size
- with minimal communication effort
 \rightarrow minimise number of grid cells at partition boundaries
Graph-Based Partitioning

Graph-Representation of Grids:

- “standard” graph \((V, E)\) for a grid:
 \(V\) = grid vertices, \(E\) = set of all grid cell edges

- vs. “dual” graph \((V', E')\):
 \(V'\) = grid cells, \(E'\) = tuples of adjacent grid cells
Graph-Based Partitioning

Graph-Representation of Grids:

- “standard” graph \((V, E)\) for a grid:
 \(V\) = grid vertices, \(E\) = set of all grid cell edges
- vs. “dual” graph \((V', E')\):
 \(V'\) = grid cells, \(E'\) = tuples of adjacent grid cells
K-way Graph Partitioning

- divide V (or V') into K equal-sized partitions V_k:
 $$\bigcup_{k} V_k = V, \ |V_k| = |V| / K, \ V_k \cap V_j = \emptyset \ (if \ k \neq j)$$
- minimise edge cut: $\{(e, f) \in E : e \in V_k, f \notin V_k\}$
- NP-complete problem \Rightarrow use heuristics-based algorithms
Multilevel k-Way Partitioning

Algorithm by Karypis and Kumar (1998):

1. coarsening phase:
 - successively collapse sets of vertices to reduce problem size
 - conserve vertex/edge weights

2. partitioning phase:
 - perform K-way partitioning on a coarse graph

3. uncoarsening phase:
 - successively expand collapsed vertices to obtain respective partitioning of the original graph
 - postprocessing after each uncoarsening step to improve load balance
Coarsening Phase

Coarsening by **Matching**:

- “matching”: set of edges, where no two edges share a common vertex
- “maximal” matching: a matching, where no further edges can be added (but some vertices might still be without a match)
- in contrast: “perfect” matching (matching covers all vertices)

Matching-based Coarsening:

- two vertices connected by an edge of the matching will be collapsed
- stop coarsening, if graph is small enough or matching does no longer lead to sufficient coarsening
Random Matching:

- vertices are visited in random order
- an unmatched vertex u randomly selects an unmatched connected vertex v
 $\rightarrow (u, v)$ is added to the matching
- vertices stay unmatched, if they no longer have an unmatched neighbour

\Rightarrow simple, greedy approach; however, does not consider minimisation of edge-cut
Heavy Edge Matching:

- use weighted edges: $W(e)$ and $W(A) := \sum_{e \in A} W(e)$
- E_{i+1} and E_i the edges of coarse/fine graph due to a matching M_i, then: $W(E_{i+1}) = W(E_i) - W(M_i)$
- heuristics: use heavy edges for matching
- again: visit vertices in random order; pick edge (to unmatched vertex) with the largest edge weight

⇒ greedy approach, heuristics to keep edge-cut low, but does not guarantee minimisation of edge-cut
Modified Heavy Edge Matching:

- experience: coarse graphs with low average degree (number of outgoing edges) of edges lead to partitions with lower edge-cut
- chose random vertex $v \rightarrow H(v)$ the set of adjacent edges with maximum weight
- for each $u \in H(v)$, define $W(v, u) = \sum W(e)$ for all edges e that
 - are adjacent to v, i.e. $e = (v, u')$
 - u' is connected to u
- determine maximum $W(v, u)$ and pick resp. (v, u) for matching
Collapse Graph after Matching

Determine Coarse Vertices:
- matching M_i computed for (V_i, E_i)
- each $m \in M_i$ becomes a vertex of V_{i+1}
- each non-matched $v \in V_i$ becomes a vertex of V_{i+1}
- weight vertices to preserve load balance info: weights are added for matched edges

Determine Coarse Edges:
- an edge between two vertices of V_{i+1} is generated, if an edge in E_i connects any of the former members
- the edge weights are added over all such connections
 \rightarrow preserve edge-cut
Partitioning of the Coarse Graph

Options:

- coarsen until only k graph vertices are left?
 \rightarrow bad partitions (vertices no longer equally weighted);
 \rightarrow matching does not reduce graph size well for small partitions

- switch to multilevel recursive bisection
 \rightarrow turns out as successful choice

- Fiedler vector for partitioning (spectral methods)
 \rightarrow solve eigenvalue problem on the adjacency matrix

- geometric methods (coordinates required)

- combinatorial methods
Uncoarsening of the Graph Partitions

Backprojection:
- partitioning P_{i+1} given on coarse graph
- put vertex v of P_i to partition $p \in P_i$, if match-vertex of v belongs to p in P_{i+1}

Local Refinement:
- even, if P_i might be (locally) optimal, P_{i+1} can be improved, as more degrees of freedom are available
- approach: swap vertices between partitions to reduce edge cut (until a local minimum is reached)
Local Refinement Algorithm

- define *neighbourhood* $N(v)$ for each vertex v: set of adjacent partitions
- for each vertex, compute gains for moving v into each of the partitions in $N(v)$
- move vertex from partition a to $b \in N(v)$, if
 1. gain $g(v, b)$ is large (largest among $N(v)$) and
 2. balancing is maintained:

\[
W_i[b] + W(v) \leq W_{\text{max}} \quad \text{and} \quad W_i[a] - W(v) \geq W_{\text{min}}
\]

- *greedy refinement*: visit vertices at partition boundaries in random order; move to the partition with largest gain
- in addition: move vertex, if edge cut stays equal but balance is improved
Local Refinement Algorithm (2)

Determine gain of vertex:

- sum up weights of edges to neighbour partition

\[\text{external degree: } \text{ED}[v, b] := \sum_{u \in P_b} W(v, u) \]

- sum up weights of edges in the same partition

\[\text{internal degree: } \text{ID}[v] := \sum_{u \in P[v]} W(v, u) \]

- gain of moving \(v \) to \(b \):

\[g[v, b] = \text{ED}[v, b] - \text{ID}[v] \]
MLkP-Example – Coarsening Phase

Start with dual graph:
MLkP-Example – Coarsening Phase

Start with dual graph:
MLkP-Example – Coarsening Phase

Random matching:
MLkP-Example – Coarsening Phase

Collapse vertices and re-build adjacency graph:

(bigger discs indicated heavier vertices, i.e. multiple grid cells)
MLkP-Example – Coarsening Phase

Random matching:
MLkP-Example – Coarsening Phase

Collapse vertices and re-build adjacency graph:

(multiple edges between matchings lead to edge weights > 1)
MLkP-Example – Coarsening Phase

Random matching:
MLkP-Example – Coarsening Phase

Collapse vertices and re-build adjacency graph:

(yellow numbers indicated vertex weights)
Determine initial partitioning on coarsened graph:

\(\text{edge-cut: 11} \quad \text{balance: 25–26–19}\)

(minimize edge-cut: do not cut 2-/3-weighted edges)
MLkP-Example – Uncoarsening Phase

Inflate collapsed vertices:

edge-cut: 11
balance: 25–26–19
Local improvement:

edge-cut: 11
balance: 25–23–22

(right-most vertex moves from pink to blue partition)
Inflate collapsed vertices:

edge-cut: 11
balance: 25–23–22
MLkP-Example – Uncoarsening Phase

Local improvement:

- **edge-cut:** 11
- **balance:** 25–23–22

(here: no vertex moves that improve edge-cut or balance)
MLkP-Example – Uncoarsening Phase

Inflate collapsed vertices:

edge-cut: 11

balance: 25–23–22
MLkP-Example – Uncoarsening Phase

Local improvement:

- edge-cut: 11
- balance: 24–24–22

(top-left vertex moves from green to pink partition)
MLkP-Example – Computed Partition

Partitioning obtained via (our) MLkP algorithm:

density: 11
balance: 24–24–22
MLkP-Example – Computed Partition

Compare with optimal(?) partitioning:

edge-cut: 9
bal.: 24-23-23

Analyse: what choices lead to different partitioning?