HPC – Algorithms and Applications

Structured Grids and Space-Filling Curves

Michael Bader

Winter 2013/2014
Part I

From Quadtrees to Space-Filling Curves
Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares
- adaptive refinement possible
- terminate, if squares entirely within or outside domain
Storing a Quadtree – Sequentialisation

- sequentialise cell information according to depth-first traversal
- relative numbering of the child nodes determines sequential order
- here: leads to so-called Morton order
Morton Order

Relation to bit arithmetics:
- odd digits: position in vertical direction
- even digits: position in horizontal direction
Morton Order and Cantor’s Mapping

Bit interleaving:

\[0.0111001 \ldots \rightarrow \left(\begin{array}{c} 0.0110 \ldots \\ 0.1101 \ldots \end{array} \right) \]

Georg Cantor (1877):

- a **bijective** mapping \([0, 1] \rightarrow [0, 1]^2\) exists
- proved identical cardinality of \([0, 1]\) and \([0, 1]^2\)
 (Cantor: “I see it but I don’t believe it!”)
- provoked the question: is there a **continuous** mapping? (i.e. a curve)
Preserving Neighbourship for a 2D Octree

Requirements:

- consider a simple 4×4-grid
- uniformly refined
- subsequently numbered cells should be neighbours in 2D

Leads to (more or less unique) numbering of children:
Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D
- here: similar to the concept of Hilbert curves
Open Questions

Algorithmics:

- How do we describe the sequential order algorithmically?
- What kind of operations are possible?
- Are there further “orderings” with the same or similar properties?

Applications:

- Can we quantify the “neighbour” property?
- In what applications can this property be useful?
- What further operations
Part II

Space-Filling Curves
Definition of a Space-filling Curve

Given a continuous, surjective mapping \(f : \mathcal{I} \to Q \subset \mathbb{R}^n \), then \(f_*(\mathcal{I}) \) is called a space-filling curve, if \(|Q| > 0 \).

Comments:

- a curve is defined as the image \(f_*(\mathcal{I}) \) of a continuous mapping \(f : \mathcal{I} \to \mathbb{R}^n \)
- surjective: every element in \(Q \) occurs as a value of \(f \), i.e., \(Q = f_*(\mathcal{I}) \)
- \(\mathcal{I} \subset \mathbb{R} \) and \(\mathcal{I} \) is compact, typically \(\mathcal{I} = [0, 1] \)
- if \(Q \) is a smooth manifold, then there can be no bijective space-filling mapping \(f : \mathcal{I} \to Q \subset \mathbb{R}^n \)
 (theorem: E. Netto, 1879).
Example: Construction of the Hilbert curve

Iterations of the Hilbert curve:

- start with an iterative numbering of 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations
Example: Construction of the Hilbert curve

Recursive construction of the *iterations*:

- split the quadratic domain into 4 congruent subsquares
- find a space-filling curve for each subdomain
- join the four subcurves in a suitable way
A Grammar for Describing the Hilbert Curve

Construction of the iterations of the Hilbert curve:

→ motivates a Grammar to generate the iterations
A Grammar for Describing the Hilbert Curve

- Non-terminal symbols: \{H, A, B, C\}, start symbol \textit{H}
- Terminal characters: \{↑, ↓, ←, →\}
- productions:

\begin{align*}
H & \leftarrow A \uparrow H \rightarrow H \downarrow B \\
A & \leftarrow H \rightarrow A \uparrow A \leftarrow C \\
B & \leftarrow C \leftarrow B \downarrow B \rightarrow H \\
C & \leftarrow B \downarrow C \leftarrow C \uparrow A
\end{align*}

- replacement rule: in any word, all non-terminals have to be replaced at the same time \(\rightarrow\) L-System (Lindenmayer)

⇒ the arrows describe the iterations of the Hilbert curve in “turtle graphics”
Definition of the Hilbert Curve’s Mapping

Definition: (Hilbert curve)

- each parameter \(t \in \mathcal{I} := [0, 1] \) is contained in a sequence of intervals

\[
\mathcal{I} \supset [a_1, b_1] \supset \ldots \supset [a_n, b_n] \supset \ldots,
\]

where each interval result from a division-by-four of the previous interval.

- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares)

- the 2D sequence of intervals converges to a unique point \(q \) in \(q \in \mathcal{Q} := [0, 1] \times [0, 1] \) — \(q \) is defined as \(h(t) \).

Theorem

\(h : \mathcal{I} \rightarrow \mathcal{Q} \) defines a space-filling curve, the Hilbert curve.
Claim: \(h \) defines a Space-filling Curve

We need to prove:

- \(h \) is a mapping, i.e. each \(t \in \mathcal{I} \) has a unique function value \(h(t) \to \text{OK} \), if \(h(t) \) is independent of the choice of the sequence of intervals (proof skipped)

- \(h : \mathcal{I} \to \mathcal{Q} \) is surjective:

 - for each point \(q \in \mathcal{Q} \), we can construct an appropriate sequence of 2D-intervals

 - the 2D sequence corresponds in a unique way to a sequence of intervals in \(\mathcal{I} \) – this sequence defines an original value of \(q \)

 \(\Rightarrow \) every \(q \in \mathcal{Q} \) occurs as an image point.

- \(h \) is continuous \(\rightarrow \) see proof of Hölder continuity
3D Hilbert Curves – Iterations

1st iteration

2nd iteration
Part III

Parallelisation Using Space-Filling Curves
Generic Space-filling Heuristic

Bartholdi & Platzman (1988):

1. Transform the problem in the unit square, via a space-filling curve, to a problem on the unit interval
2. Solve the (easier) problem on the unit interval

For parallelisation: strategy to determine partitions

1. use a space-filling curve to generate a sequential order on the grid cells
2. do a 1D partitioning on the list of cells (cut into equal-sized pieces, or similar)
Hilbert-Curve Partitions on a Cartesian Grid

- Hilbert curve splits vertices into right/left (red/green) set
- Hilbert order traversal provides boundary vertices in sequential order
Example: Hilbert-Curve Partitions on Quadtrees

- here: with ghost cells
 (processed in identical order in both partitions)
Recall: Grammar to Describe the Hilbert Curve

Construction of the iterations of the Hilbert curve:

Can this grammar be used to generate *adaptive* Hilbert orders?
A Grammar for Hilbert Orders on Quadtrees

- Non-terminal symbols: \{H, A, B, C\}, start symbol \(H\)
- Terminal characters: \{↑, ↓, ←, →, (,)\}
- Productions:

 \[
 \begin{align*}
 H & \leftarrow (A ↑ H \rightarrow H ↓ B) \\
 A & \leftarrow (H \rightarrow A ↑ A \leftarrow C) \\
 B & \leftarrow (C \leftarrow B ↓ B \rightarrow H) \\
 C & \leftarrow (B ↓ C \leftarrow C ↑ A)
 \end{align*}
 \]

⇒ arrows describe the iterations of the Hilbert curve in “turtle graphics”
⇒ terminals (and) mark change of levels: “up” and “down”
Hölder Continuity

A function \(f : \mathcal{I} \rightarrow \mathbb{R}^n \) is (uniformly) continuous, if for each \(\epsilon > 0 \) there is a \(\delta > 0 \), such that:

for all \(t_1, t_2 \in \mathcal{I} \) with \(|t_1 - t_2| < \delta \),
the image points have a distance of \(\|f(t_1) - f(t_2)\|_2 < \epsilon \)

Hölder Continuity:

\(f \) is called Hölder continuous with exponent \(r \) on \(\mathcal{I} \), if a constant \(C > 0 \) exists, such that for all \(t_1, t_2 \in I \):

\[
\|f(t_1) - f(t_2)\|_2 \leq C |t_1 - t_2|^r
\]

- case \(r = 1 \) is equivalent to Lipschitz continuity
- Hölder continuity implies uniform continuity
Hölder Continuity and Parallelisation

\[\| f(t_1) - f(t_2) \|_2 \leq C |t_1 - t_2|^r \]

Interpretation:

- \(\| f(t_1) - f(t_2) \|_2 \) is the distance of the image points
- \(|t_1 - t_2|\) is the distance of the indices
- also: \(|t_1 - t_2|\) is the area of the respective space-filling-curve partition
- hence: relation between volume (number of grid cells/points) and extent (e.g. radius) of a partition

\[\Rightarrow \text{Hölder continuity gives a quantitative estimate for compactness of partitions} \]
Hölder Continuity of the Hilbert Curve

Proof:

• given $t_1, t_2 \in I$; choose n, such that $4^{-(n+1)} < |t_1 - t_2| < 4^{-n}$

• 4^{-n} is interval length for the n-th iteration
 $\Rightarrow [t_1, t_2]$ overlaps at most two neighbouring(!) intervals.

• due to construction of the Hilbert curve, $h(t_1)$ and $h(t_2)$ are in neighbouring subsquares with face length 2^{-n}.

• these two subsquares build a rectangle with a diagonal of length $2^{-n} \cdot \sqrt{5}$; therefore: $\| h(t_1) - h(t_2) \|_2 \leq 2^{-n} \sqrt{5}$

• as $4^{-(n+1)} < |t_1 - t_2|$, we have $2 \cdot 2^{-n} < \sqrt{|t_1 - t_2|}$

\Rightarrow result: $\| h(t_1) - h(t_2) \|_2 \leq \frac{1}{2} \sqrt{5} |t_1 - t_2|^{1/2}$
Part IV

Outlook: Parallelisation with Space-Filling Curves and Refinement Trees
Hilbert-Order Bitstream-Encoding of a Quadtree
Refinement-Tree Encoding of a Quadtree
Refinement-Tree Encoding of a Quadtree (2)

REFTREE algorithm for partitioning:

- attributed quadtree with number of leaves/nodes of the subtree for each node
- allows to determine whether a certain node/subtree may be skipped by the current partition (if index of first & last leave/node are given)
- disadvantage of data structure: required information spread across several locations in the stream ⇒ may be fixed by modified depth-first order

cmp. algorithm in Maple worksheet reftree_hilbert_vertextexlab.mw
Refinement-Tree Encoding with Modified Depth-First Order

(numbers in the tree represent position of resp. node information in the stream)
Parallelisation vs. Partitioning with SFC

Besides partitioning, parallelisation has to deal with:

- data exchange between partitions:
 → unknowns on separator between partitions
 → synchronize refinement status at partition boundaries
- may exploit “stack property” of Hilbert curves
How to Determine Left and Right
Turtle Grammars Revisited