HPC – Algorithms and Applications

Dwarf #2 – Sparse Linear Algebra

Michael Bader

Winter 2013/2014
The Seven Dwarfs of HPC – Dwarf # 2

1. dense linear algebra
2. **sparse linear algebra**
3. spectral methods
4. N-body methods
5. structured grids
6. unstructured grids
7. Monte Carlo
Part I

Application Example: Page Rank
Ranking Problem for Websites

- given: \(n \) websites connected by hyperlinks
- wanted: rank websites according to “importance”
- idea: rank depends on links to a website

Quantitative approach – count the links:

- Graph model:
 websites → nodes, links → edges
- represented as adjacency matrix:
 \(A_{ij} = 1 \) if an edge exists from \(i \) to \(j \), (else \(A_{ij} = 0 \))
- ranking depends on number of edges to \(j \)

\[
r(j) := \sum_{i \neq j} A_{ij} \quad \text{(column sum)}
\]
PageRank

Qualitative approach:
- Goal: links from "important" website have higher impact
- Step 1: add weights (rank) instead of number of links
- Example: page 3 and 4 link to page 2
 ⇒ impact x_2 of page 2 is $x_2 = x_3 + x_4$

Modelled by adjacency matrix:
- leads to system of equations:
 $$x_j = \sum_{i \neq j} A_{ij}x_i = \sum_{i \neq j} (A^T)_{ji}x_i$$
- in matrix-vector notation: $x = A^T x$
 (search eigenvector for eigenvalue 1)
PageRank (2)

- Goal: reduce influence of pages with many links
- Step 2: weights divided by number of outgoing links (each website has a "total impact"/sum of weights of 1)
- Example: page 3 (three outgoing links) and 4 (two links) link to page 2
 \Rightarrow impact x_2 of page 2 is $x_2 = \frac{1}{3}x_3 + \frac{1}{2}x_4$

Modelled by adjacency matrix:

- n_i: number of outgoing links of page i; $n_i = \sum_j A_{ij}$
- Resulting system of equations:

$$x_j = \sum_{i \neq j} \frac{1}{n_i} A_{ij} x_i = \sum_{i \neq j} \left(\frac{1}{n_i} (A^T)_{ji} \right) x_i$$
Page-Rank Matrix

- set $B_{ji} := \frac{1}{n_i} (A^T)_{ji} \rightarrow$ leads to system of equations:

$$x_j = \sum_{i \neq j} \frac{1}{n_i} A_{ij} x_i = \sum_{i \neq j} B_{ji} x_i$$

- search eigenvector for eigenvalue 1: $x = Bx$

Properties of the page-rank matrix:

- all column sums are 1
- all $B_{ji} \geq 0$, diagonal elements $B_{jj} = 0$
 (linking to your own page is not counted)
- B is a so-called (left) stochastic matrix
Stochastic Matrices – Properties

B a stochastic matrix, then:

1. B has 1 as eigenvalue;
 all elements of the corresp. eigenvectors $b^{(1)} \geq 0$
 \rightarrow normalise $b^{(1)}$, such that $\sum b_j^{(1)} = 1$

2. element sum of $y = Bx$ is equal to the element sum of x;
 if $x \geq 0$ (element-wise), then also $y \geq 0$

3. ν an eigenvector of B with eigenvalue $\neq 1$,
 \Rightarrow element sum of ν equal to 0

4. λ eigenvalue of B, then $|\lambda| \leq 1$

(without proofs \rightarrow see a resp. textbook)
Vector Iteration with Stochastic Matrices

- examine iteration $x^{(m)} = Bx^{(m-1)}$, start vector $x^{(0)} \geq 0$ has element sum 1
- use eigenvector decomposition of $x^{(0)}$:

$$x^{(0)} = \sum_j \gamma_j b^{(j)}$$

- then: $x^{(m)} = B^m x^{(0)} = \sum_j \gamma_j \lambda_j^m b^{(j)}$

- if $\lambda_1 = 1$ and all other $0 < \lambda_j < 1$, then:

$$x^{(m)} = \sum_j \gamma_j \lambda_j^m b^{(j)} \rightarrow \gamma_1 b^{(1)} \quad \text{for } m \rightarrow \infty$$
PageRank in Practice

- use a start vector $x^{(0)}$ with element sum 1 (then: $\gamma_1 = 1$
- vector iteration $x^{(m)} = Bx^{(m-1)}$ converges to ranking vector $\gamma_1 b^{(1)} = b^{(1)}$ (with element sum 1)
- as every page has only few outgoing links $\rightarrow B$ a sparse matrix
- n pages with an average of k links per page: $\rightarrow kn$ mult/add operations per iteration
- convergence faster for smaller values of the largest eigenvalue (except $\lambda_1 = 1$)
Vector Iteration in Practice

Problem: two separate partitions

- consider the following page-rank matrix:

\[B = \begin{pmatrix} B_I & 0 \\ 0 & B_{II} \end{pmatrix} \]

(web divided into two non-linked partitions)

- \(B_I \) and \(B_{II} \) are stochastic matrices, each with eigenvectors \(b_I \) and \(b_{II} \) for eigenvalue 1

- \((b_I \ b_{II})^T\), but also \((b_I \ 0)^T\) and \((0 \ b_{II})^T\) are eigenvectors of \(B \) (for eigenvalue 1)

- consequences for convergence and ranking?
Problem: slow convergence

- happens, if at least one $\lambda \approx 1$ (but $\neq \lambda_1 = 1$)
- modify page-rank matrix B:

$$
\tilde{B} \sim \alpha B + (1 - \alpha) \frac{1}{n} \begin{pmatrix}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{pmatrix}
$$

- new system of equations $x = \tilde{B}x$,
 or: $x = \alpha Bx + (1 - \alpha) \frac{1}{n} ee^T x$, with $e = (1, \ldots, 1)^T$
- equivalent to: $x - \alpha Bx = (1 - \alpha) \frac{1}{n} ee^T x$
- $\frac{1}{n} ee^T$ stochastic, therefore \tilde{B} a stochastic matrix, as well
Vector Iteration in Practice (3)

Regularisation

- \(x = \tilde{B}x \text{ iff } x - \alpha Bx = (1 - \alpha) \frac{1}{n} ee^T x \)
- as \(e^T x = 1 \) (element sum = 1):
 \[
 (I - \alpha B)x = \frac{1}{n} (1 - \alpha) e \quad \text{where } 0 < \alpha < 1
 \]
- eigenvalues of \(\alpha B \) are \(\leq \alpha \)
 \(\Rightarrow (I - \alpha B) \) not singular (all eigenvalues \(\geq 1 - \alpha \))
- leads to unique solution
Vector Iteration in Practice (4)

Convergence

• compute solution via vector iteration:

\[x^{(m)} = \alpha B x^{(m-1)} + (1 - \alpha) \frac{1}{n} e \]

• corresponds to iteration for error vector \(\epsilon(m) = x^{(m)} - x \):

\[\epsilon(m) = \alpha B \epsilon(m - 1) \]

• now: all eigenvalues of \(\alpha B \) are \(\leq \alpha \)

• therefore \(\|\epsilon(m)\| \sim \alpha^m \|\epsilon(0)\| \)

(convergence faster for smaller \(\alpha \))
Vector Iteration in Practice (5)

Regularisation vs. Convergence:

- Vector iteration converges faster for smaller α
- solution is better, the closer α is to 1 (then $\tilde{B} \approx B$)
- task: find an optimal α
 (common page-rank choice: $\alpha = 0.85$)
- regularisation parameter balances between exact solution and “well-behaved” problem
- regularisation therefore a frequent technique for ill-posed problems
PageRank as a Population Model: Random Surfer

- each website “populated” by x_i web surfers
- total population: $\sum x_i = 1$ (normalised)
- population corresponds to page rank: how many surfer are expected to be on each site?

PageRank: "‘Random Surfer’"

- surfers randomly follow a link from the current page (and change to a different website)
- thus: $\frac{1}{n_i} A_{ij} x_i$ surfers change to website j
- regularisation: with probability $(1 - \alpha)$, a surfer will jump to another (random) page in the internet
- vector iteration \rightarrow population evolves towards an equilibrium
A matrix is called sparse, if it contains that many zero elements (i.e., that few non-zeros), such that it becomes worthwhile to change to special data structures and algorithms to store and process them.

(following a definition by Wilkinson)
Coordinate Scheme (aka Triple Scheme)

- store a triple \((a_{ij}, i, j)\) for each non-zero \(a_{ij}\) (not necessarily sorted)
- implementation as “array of struct”:

  ```
  struct sparseElement {
    int i; int j; int value
  };
  typedef struct sparseElement[] sparseMatrix;
  ```

- implementation as \(3 \times K\) matrix (\(K\) non-zeros):

<table>
<thead>
<tr>
<th>(a_{ij})</th>
<th>2.</th>
<th>-1.</th>
<th>-1.</th>
<th>2.</th>
<th>-1</th>
<th>-1.</th>
<th>2.</th>
<th>-1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(j)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

- used, for example, in Matlab, or as input format
Compressed Row Storage (CRS)

- two arrays of size K with a_{ij} and j:

 \[
 \begin{array}{cccccccccc}
 a[k] & 2. & -1. & -1. & 2. & -1 & -1. & 2. & -1. & -1. & 2. \\
 j[k] & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 4 & 3 & 4
 \end{array}
 \]

 (sorted by increasing row)

- third array points to start of a row in $a[k]$:

 \[
 \begin{array}{c}
 \text{start}[i] \\
 0 & 2 & 5 & 8 & 10
 \end{array}
 \]

- implementation of sparse-matrix-vector mult. (SpMV):

 \[
 \text{for}(i=0; i<n; i++) \{
 \text{for}(k=$\text{start}[i]$; k<$\text{start}[i+1]$; k++)
 \quad y[i] += a[k] \times x[j[k]];
 \}
 \]
Variants of CRS

Compressed Column Storage (CCS)
- same as CRS, but with rows and columns exchanged
- used in Harwell-Boeing / Rutherford Boeing collection

Gustavson: Combine CRS and CCS
- compressed row storage format plus:
 - column starts (start[j]) and row indices i[k] as in CCS
 - improves column-wise access to sparse matrices

Block CRS
- store small matrix blocks (e.g.: 2×2, 4×4) instead of single elements
- improves exploitation of SIMD capabilities of CPUs
Incremental CRS

- use $\tilde{j} = (i-1) \cdot n + (j-1)$ as element index
- store increments of \tilde{j} in array inc[k]

<table>
<thead>
<tr>
<th>a[k]</th>
<th>2.</th>
<th>–1.</th>
<th>–1.</th>
<th>2.</th>
<th>–1</th>
<th>–1.</th>
<th>2.</th>
<th>–1.</th>
<th>–1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc[k]</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\tilde{j}[k]$</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

- implementation of sparse-matrix-vector mult. (SpMV):

  ```c
  for (k=0, i=0, jj =inc [0]; i<n; i += j/n)
    for ( j = j%n; j<n; j+=inc[k], k++ )
      y[i] += a[k] * x[j];
  ```

- C impl. of SpMV found to be faster than for CRS (Bisseling)
- avoids array start[i] (esp. attractive, if $K < n$)
ELLPACK Format – Rectangular Storage

- scenario: at most k_{max} non-zeros per row
- store values in $n \times k_{\text{max}}$ matrix/array a_{ik}
- store column indices in $n \times k_{\text{max}}$ matrix/array j_{ik}

\[
\begin{pmatrix}
2. & -1. & 0 \\
-1. & 2. & -1 \\
-1. & 2. & -1. \\
-1. & 2. & 0
\end{pmatrix}
\quad \begin{pmatrix}
1 & 2 & * \\
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & *
\end{pmatrix}
\]

- very regular data structure
- supports vectorisation
ELLPACK Format – SpMV Implementation

- row-oriented implementation:

  ```
  for (i=0; i<n; i++)
    for (k=0; k<kmax; k++)
      y[i] += a[i][k] * x[j[i][k]];
  ```

- column-oriented implementation:

  ```
  for (k=0; k<kmax; k++)
    for (i=0; i<n; i++)
      y[i] += a[i][k] * x[j[i][k]];
  ```

 → second for-loop leads to vector access to y, a and j
Jagged Diagonal Storage (JDS)

- sort rows according to number of non-zeros
- consider matrices a_{ik} and j_{ik} as in ELLPACK
- store a_{ik} and j_{ik} sequentially and in column-major order
- but do not store a_{ik}, j_{ik} for zero elements
 ⇒ requires additional array start[k] (start of k-th column)
- SpMV implementation (column-oriented):

  ```
  for (k=0; k<kmax; k++)
  for (i=0; i < (start[k+1]−start[k]); i++)
      y[i] += a[start[k]+i] * x[j[start[k]+i]];
  ```

- Note: element in the result vector y are re-ordered, as well
 (according to number of non-zeros per row)
Reference/Literature (Sparse Linear Algebra)

Rob H. Bisseling:
Parallel Scientific Computing – A structured approach using BSP and MPI.