Tutorial: HPC - Algorithms and Applications
WS 13/14

Complete the following assignments (alone or in a group), and send your source code via e-mail to meistero@in.tum.de until Sunday, January, 5th 2014.

Worksheet 4: Heat Equation in CUDA

Assignment 1: cuBLAS + ELLPACK

Write an ELLPACK matrix-vector multiplication kernel for the Heat Equation example code.

a) Open kernels.cu, define grid and block size for the call to ell_mat_vec_mm

b) Implement the ell_mat_vec_mm kernel:
 i) Again, assign one thread to a row and let the kernel perform the inner loop.
 ii) This time, take care that access to the arrays indices and data is coalesced, access to x may be uncoalesced.
 iii) In order to achieve coalesced access, we must imply that entries in indices and data are in a specific order. Which order is that?

c) Open poisson.c and implement poisson_ellpack.
 i) Add instructions for cuBLAS context creation and destruction.
 ii) Use cuBLAS in order to execute vector algebra required for simulating the discretized heat equation.

d) Execute the code using ./sparse -H [<matrix size>]. If you have gnuplot installed you can uncomment #define GNUPLOT in poisson.c for visual output. Textual output for a matrix of size 64×64 should be:

\[
\begin{align*}
 t &= 0.0000, \ err = 1.4142e+00, \ & \text{Temperature at } x = 0.5: \ 1.0000e+00 \\
 t &= 0.6450, \ err = 9.8181e-03, \ & \text{Temperature at } x = 0.5: \ 6.9696e-01 \\
 t &= 1.2900, \ err = 5.1307e-03, \ & \text{Temperature at } x = 0.5: \ 3.8419e-01 \\
 t &= 1.9350, \ err = 2.8166e-03, \ & \text{Temperature at } x = 0.5: \ 2.1122e-01 \\
\end{align*}
\]
Assignment 2: cuSPARSE

Write a cuSPARSE matrix-vector multiplication kernel for the Heat Equation example code.

a) Open poisson.c and implement poisson_cusparse. A sparse matrix in CSR format already exists.
 i) Add instructions for cuSPARSE context creation and destruction.
 ii) Convert the CSR matrix to HYB format using cuSPARSE
 iii) Call cuSPARSE for matrix-vector multiplication in the time step loop
 iv) Add cuBLAS vector instructions similar to assignment 1

b) Execute the code using ../sparse -H -C [<matrix size>] and check if the result is consistent with assignment 1d.

c) How do performance of the ELLPACK and the cuSPARSE kernel compare for different matrix sizes?