HPC – Algorithms and Applications

Dwarf #1 – Dense Linear Algebra

Michael Bader
Winter 2014/2015
The Seven Dwarfs of HPC – Dwarf #1

1. dense linear algebra
2. sparse linear algebra
3. spectral methods
4. N-body methods
5. structured grids
6. unstructured grids
7. Monte Carlo
Part I

Matrix Multiplication
Matrix Multiplication on the PRAM

MatrixMult_PRAM(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
 ! Model: CREW–PRAM with $n \times n$ processors
 for i from 1 to n do in parallel
 for k from 1 to n do in parallel
 for j from 1 to n do
 $C[i,k] = C[i,k] + A[i,j] \times B[j,k]$
}

Strategy:

- each processor computes one element of the result matrix
 \Rightarrow exclusive write access to $C[i,k]$
- runtime $O(n)$ on n^2 processors
Matrix Multiplication on the PRAM

MatrixMult_PRAM(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
 ! Model: CREW–PRAM with n*n processors
 for i from 1 to n do in parallel
 for k from 1 to n do in parallel
 for j from 1 to n do
 C[i,k] = C[i,k] + A[i,j]*B[j,k]
}

Observation:
• synchronised execution of the for-j-loop;
 → in the first step:
• all processors $P_{i,k}$ simultaneously access $A[i,1]$
• all processors $P_{i,k}$ simultaneously access $B[1,k]$
PRAM Matrix Multiplication with Shifted Indices
Forcing Exclusive Read Access

MatrixMult_PRAM(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
 ! Model: EREW–PRAM with n*n processors
 for i from 1 to n do in parallel
 for k from 1 to n do in parallel
 for j from 1 to n do
 C[i,k] = C[i,k] + A[i,(i+j+k) mod n]*B[(i+j+k) mod n,k]
 }

Observation: in the first step of the j-loop
- processors $P_{i,k}$ access $A[i,(i+1+k) \mod n]$
- processors $P_{i,k}$ access $B[(i+1+k) \mod n,k]$
- leads to exclusive read access to A and B
Matrix Multiplication – Three Nested Loops?

Matrix Multiplication and Parallel External Memory:

\[
\begin{align*}
 &\text{for } i \text{ from } 1 \text{ to } n \text{ do in parallel} \\
 &\quad \text{for } k \text{ from } 1 \text{ to } n \text{ do in parallel} \\
 &\quad\quad \text{for } j \text{ from } 1 \text{ to } n \text{ do} \\
 &\quad\quad\quad C[i,k] = C[i,k] + A[i,j] \times B[j,k]
\end{align*}
\]

How many memory transfers?

- according to the Parallel External Memory model
- each processor reads $2n$ elements
- thus $n^2 \cdot 2n/L$ transfers (of cache lines, each with L words)
- how to use the local memory?
Block-Oriented Matrix Multiplication

Block-oriented formulation:

\[
\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{pmatrix}
=
\begin{pmatrix}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{pmatrix}
\]

→ each \(A_{ij}, B_{jk}, C_{ik} \) a square matrix block

Block operations:

- \(C_{11} = A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} \)
- \(C_{12} = A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \)
- \(\ldots \)
- three blocks need to fit in local memory!
Matrix Multiplication on Parallel External Memory

MatrixMult_PRAM(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
 ! Model: CREW–PRAM with \((n/b)\times(n/b)\) processors
 for i from 0 to n/b−1 do in parallel
 for k from 0 to n/b−1 do in parallel
 for j from 0 to n/b−1 do {
 ! read required blocks of A and B (also C for \(j=1\))
 for ii from 1 to b do
 for kk from 1 to b do
 for jj from 1 to b do
 C[i*b+ii ,k*b+kk] = C[i*b+ii ,k*b+kk]
 + A[i*b+ii , j*b+jj]*B[j*b+jj ,k*b+kk]

}
Blocked MatrixMult on PEM – Memory Transfers

Number of Memory Transfers:

- local memory can hold M words; choose b such that $3b^2 < M$ (ideal: $3b^2 = M$)
- read/write local C block: $2b^2$ words per processor
- read all n/b A blocks and n/b B blocks: $2n/b \cdot b^2$ words per processor
- for all $(n/b)^2$ processors: $(n/b)^2 \cdot (2n/b + 2)b^2 = 2n^3/b + 2n^2$ words
- $b \in \Theta(\sqrt{M})$; move L words per transfer; therefore: $\Theta(n^3/(L\sqrt{M}))$ memory transfers
Matrix Multiplication in the Roofline Model

Back to three nested loops:

\[
\text{for } i \text{ from } 1 \text{ to } n \text{ do in parallel} \\
\quad \text{for } k \text{ from } 1 \text{ to } n \text{ do in parallel} \\
\quad \quad \text{for } j \text{ from } 1 \text{ to } n \text{ do} \\
\quad \quad \quad C[i,k] = C[i,k] + A[i,j] \times B[j,k]
\]

How many GFlop/s?

- according to the Roofline model
- each processor reads \(2n\) elements and performs \(n\) Flop/s
- thus arithmetic intensity: 1 Flop per word (4 or 8 bytes)
- memory-bound performance!
Blocked MatrixMult in the Roofline Model

Determine Arithmetic Intensity:

- for each block, load/store $3b^2$ matrix elements ($3 \times b$ blocks of A, B, and C)
- for each block, perform $2b^3$ multiplications/additions
- thus: arithmetic intensity is $O(b)$
- thus: compute-bound, if b is big enough

“Ceilings” in the Roofline Model:

- memory access: check stride in access to A, B, and C
- exploit vector instructions and “fused multiply-add”
- impact of “multi-core” parallelism?
Block-Oriented and Block-Recursive Multiplication

Block-oriented algorithms (loop blocking):

$$C_{ik} = \sum_j A_{ij}B_{jk}$$

→ block size tailored to specific cache size (and cache level)

Block-recursive algorithms:

$$\begin{pmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} & B_{13} & B_{14} \\
B_{21} & B_{22} & B_{23} & B_{24} \\
B_{31} & B_{32} & B_{33} & B_{34} \\
B_{41} & B_{42} & B_{43} & B_{44}
\end{pmatrix}
= \begin{pmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & C_{34} \\
C_{41} & C_{42} & C_{43} & C_{44}
\end{pmatrix}$$

→ recursive blocking will eventually lead to “correct” block size
Matrix Multiplication on a 2D Mesh
Towards Distributed Memory and Cannon’s Algorithm

New Algorithmic Model:
Interconnection Network (2D Mesh) instead of PRAM

Strategy:
- consider a 2D mesh of processors
- each processor holds one element (later: one block) of A, B, and C
- C element/block stays on a fixed processor
- A and B blocks need to be transferred between processors
- recall: PRAM algorithm with shifted indices and exclusive read access to A and B
PRAM Matrix Multiplication with Shifted Indices

MatrixMult_PRAM(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
 ! Model: EREW–PRAM with n*n processors
 for i from 1 to n do in parallel
 for k from 1 to n do in parallel
 for j from 1 to n do
 C[i,k] = C[i,k] + A[i,(i+j+k) mod n]*B[(i+j+k) mod n,k]
 }

Observation: in the \(j\)-th step of the \(j\)-loop

- processors \(P_{i,k}\) access \(A[i,(i+j+k) \mod n]\)
- processors \(P_{i,k}\) access \(B[(i+j+k) \mod n,k]\)
- increase of \(j\) determines index of next block:
 next access always to block or row neighbour!
Matrix Multiplication on the 2D Mesh

→ “Cannon’s Algorithm”:

```
MatrMult_2Dmesh(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
    ! Model: 2D mesh with n×n processors
    input P[i,k]: A,B,C, range P[i,k]: 1<=i,k<=n
    ! init : P[i,k] holds A[i,(i+k+1)mod n], B[(i+1+k)mod n,k]
    for P[i,k]: 1<=i,k<=n do in parallel
        for j from 1 to n do {
            C = C + A*B;
            P[i,k]: A <<< P[i,(k+1)mod n]:A
            P[i,k]: B <<< P[(i+1)mod n,k]:B
        }
    end in parallel
    output P[i,k]: C, range P[i,k]: 1<=i,k<=n
}
```
Cannon’s Algorithm – Time Complexity

Complexity of Cannon’s Algorithm:
- \(n \) additions/multiplications on \(n^2 \) processors
- \(2n \) send/receive operations (by each processor)

Generalization:
- switch to block-oriented algorithm on \(p^2 \) processors
- \(A[i,j] \), \(B[j,k] \), \(C[i,k] \) are matrix blocks (of size \(\frac{n}{p} \times \frac{n}{p} \))
- leads to \(p\left(\frac{n}{p}\right)^3 = \frac{n^3}{p^2} \) operations
- \(2p \) block send/receives – total volume: \(2n^2/p \) elements

Mesh → Torus:
- mistake in the analysis: transfer \(P[i,n]:A <<< P[i,1]:A \) (similar for B) not possible in one step
- actually requires a 2D torus network
Cannon’s Algorithm in the BSP Model

MatrMult_2DmeshBSP(A:Matrix[n], B:Matrix[n], C:Matrix[n]) {
 ! Model: 2D mesh with p*p processors
 input P[i,k]: A,B,C, range P[i,k]: 1<=i,k<=p
 ! init : P[i,k] holds matrix blocks A, B
 for P[i,k]: 1<=i,k<=p do in parallel
 for j from 1 to p do {
 ! each loop iteration is one BSP super step
 ! computation:
 C = C + A*B;
 ! communication:
 P[i,k]: A <<< P[i,(k+1) mod p]:A
 P[i,k]: B <<< P[(i+1) mod p,k]:B
 ! implicit barrier before entering next loop iteration
 }
 end in parallel
 output P[i,k]: C, range P[i,k]: 1<=i,k<=p
}
Cannon’s Algorithm – BSP Time Complexity

Computation in each super step:
- block matrix multiplication: \((n/p)^3\) operations
- leads to run time \(T_{\text{comp}}(n, p) = \gamma(n/p)^3\)

Communication in each super step:
- send/receive two matrix blocks, each of size \((n/p)^2\) words
- leads to communication time \(T_{\text{comm}}(n, p) = 2\beta(n/p)^2\)

Latency in each super step:
- synchronize CPUs before entering the next super step
- leads to latency time \(T_{\text{lat}}(n, p) = \lambda\)

Total BSP runtime:
- \(\rho\) super steps, thus \(T_{\text{BSP}}(n, \rho) = \gamma n^3/p^2 + 2\beta n^2/p + \lambda \rho\)
- discuss: suitable values for \(\gamma, \beta, \lambda\) and ratio \(n : \rho\)
Part II

Dense Linear Algebra
Dense Linear Algebra – Libraries

BLAS
- “Basic linear algebra subroutines for FORTRAN usage” (Lawson et al., ACM TOMS, 1979)
- BLAS level 3: dense matrix multiplication, focus on blocking to improve cache efficiency (Dongarra et al., 1990)

LAPACK
- “a portable linear algebra library for high-performance computers” (1990)
- solve systems of linear equations, least squares problems, eigenvalue problems, etc.
Dense Linear Algebra – Parallelisation

PBLAS
- parallel BLAS implementation (OpenMP, MPI)
- basis for ScaLAPACK

ScaLAPACK
- parallel library (subset of LAPACK) for distributed memory computers (v1.0: 1995; v1.8: 2007)
- basic data structure: 2D block cyclic decomposition of matrices
Example: LU Decomposition

Block-oriented formulation:

\[
\begin{pmatrix}
\hat{L}_{11} & 0 & 0 \\
L_{21} & \hat{L}_{22} & 0 \\
L_{31} & L_{32} & \hat{L}_{33}
\end{pmatrix}
\begin{pmatrix}
\tilde{U}_{11} & U_{12} & U_{13} \\
0 & \tilde{U}_{22} & U_{23} \\
0 & 0 & \tilde{U}_{33}
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix},
\]

Block operations:

1. LU decomposition: \(\hat{L}_{11} \tilde{U}_{11} = A_{11} \)
2. “find left”: \(L_{21} \tilde{U}_{11} = A_{21}, L_{31} \tilde{U}_{11} = A_{31} \)
3. “find right”: \(\hat{L}_{11} U_{12} = A_{12}, \hat{L}_{11} U_{13} = A_{13} \)
4. block updates: \(A_{22} = A_{22} - L_{21} U_{12} \)

etc.
Barrier/Tile-Oriented Parallelisation

\[L_{11}U_{11} = A_{11} \]

\[L_{21}U_{11} = A_{21} \quad L_{31}U_{11} = A_{31} \quad L_{11}U_{12} = A_{12} \quad L_{11}U_{13} = A_{13} \]

\[A_{23} = L_{21}U_{13} \quad A_{22} = L_{21}U_{12} \quad A_{32} = L_{31}U_{12} \quad A_{33} = L_{31}U_{13} \]

\[L_{22}U_{22} = A_{22} \]

\[L_{32}U_{22} = A_{32} \quad L_{22}U_{23} = A_{23} \]

\[A_{33} = L_{32}U_{23} \]

\[L_{33}U_{33} = A_{33} \]
Tile-Oriented LU Decomposition: Panel Updates

Standard situation for panel update (L and U stored in-place!):

$$\begin{pmatrix}
\hat{L}_{11} & 0 & 0 \\
L_{21} & I & 0 \\
L_{31} & 0 & I
\end{pmatrix}
\begin{pmatrix}
\tilde{U}_{11} & U_{12} & U_{13} \\
0 & A^*_{22} & A^*_{23} \\
0 & A^*_{32} & A^*_{33}
\end{pmatrix}$$

- \hat{L}_{11}, \tilde{U}_{11}: factorized block, stored in-place
- U_{12}, U_{13}, L_{21}, L_{31} updates already computed
- next step: LU-decomposition on current tile A^*_{22}
- then: panel updates to compute U_{23}, L_{32}
- update trailing matrix A^*_{33} and move to next tile
Tile-Oriented Parallelisation

Tile-oriented LU decomposition
- successive panel updates on tiles
- use BLAS-2 and BLAS-3 operations for updates (leads to cache blocking)

For parallel LU decomposition (assume distributed memory):
- how to place tiles on parallel processes?
- ... to ensure good load balance
- ... to retain BLAS-2 and BLAS-3 operations

Candidates for tile distribution:
- row- or column-wise?
- block-wise or block-cyclic?
- tiles → 2D block-wise or block-cyclic?
Block (Column) Decomposition

During Panel Updates:
- processor(s) for left block(s) unused (computation finished)
- imbalanced block at right end
Column Cyclic Decomposition

During Panel Updates:
- good balance for U updates, bad balance for L updates
- prevents BLAS-3 operations (inefficient w.r.t. cache)
2D Block Cyclic Decomposition

During Panel Updates:

- acceptable load imbalance for both L and U updates
- allows BLAS-3 operations on tiles (“tiles = blocks”)
2D Block Cyclic Decomposition

Matrix view:

```
A_{11} A_{12} A_{13} A_{14} A_{15} A_{16} A_{17} A_{18}
A_{21} A_{22} A_{23} A_{24} A_{25} A_{26} A_{27} A_{28}
A_{31} A_{32} A_{33} A_{34} A_{35} A_{36} A_{37} A_{38}
A_{41} A_{42} A_{43} A_{44} A_{45} A_{46} A_{47} A_{48}
A_{51} A_{52} A_{53} A_{54} A_{55} A_{56} A_{57} A_{58}
A_{61} A_{62} A_{63} A_{64} A_{65} A_{66} A_{67} A_{68}
A_{71} A_{72} A_{73} A_{74} A_{75} A_{76} A_{77} A_{78}
A_{81} A_{82} A_{83} A_{84} A_{85} A_{86} A_{87} A_{88}
```

Process view:

```
A_{11} A_{14} A_{17} A_{12} A_{15} A_{18} A_{13} A_{16}
A_{31} A_{34} A_{37} A_{32} A_{35} A_{38} A_{33} A_{36}
A_{51} A_{54} A_{57} A_{52} A_{55} A_{58} A_{53} A_{56}
A_{71} A_{74} A_{77} A_{72} A_{75} A_{78} A_{73} A_{76}
A_{21} A_{24} A_{27} A_{22} A_{25} A_{28} A_{23} A_{26}
A_{41} A_{44} A_{47} A_{42} A_{45} A_{48} A_{43} A_{46}
A_{61} A_{64} A_{67} A_{62} A_{65} A_{68} A_{63} A_{66}
A_{81} A_{84} A_{87} A_{82} A_{85} A_{88} A_{83} A_{86}
```

(source: ScALAPACK)
Graph-Oriented Parallelisation

\[L_{11}U_{11} = A_{11} \]

\[L_{31}U_{11} = A_{31} \]
\[L_{11}U_{12} = A_{12} \]
\[L_{11}U_{13} = A_{13} \]
\[L_{21}U_{11} = A_{21} \]

\[A_{32} = L_{31}U_{12} \]
\[A_{33} = L_{31}U_{13} \]
\[A_{22} = L_{21}U_{12} \]
\[A_{23} = L_{21}U_{13} \]

\[L_{22}U_{22} = A_{22} \]

\[L_{32}U_{22} = A_{32} \]
\[L_{22}U_{23} = A_{23} \]

\[A_{33} = L_{32}U_{23} \]

\[L_{33}U_{33} = A_{33} \]
Current Library Projects

PLASMA (http://www.netlib.org/plasma/):
- new library project to replace ScaLAPACK
- block-oriented algorithms for dense linear algebra
- DAG-based scheduling of operations
- MAGMA: version for GPUs

- “formal linear algebra methods environment”
- block-oriented algorithms for dense linear algebra
- based on block-oriented notation of algorithms; concept to transfer notation into program code
Current Library Projects (2)

OmpSs (http://pm.bsc.es/ompss):

- task-based programming model (OpenMP extension)
- input/output qualifiers to declare data dependencies
- scheduling of operations according to DAG
Part III

Outlook: Matrix Multiplication with Peano Space-Filling Curves
Multiplication of 3×3 Matrices

An optimal order of execution:

$$ \begin{pmatrix} 1 & 6 & 7 \\ 2 & 5 & 8 \\ 3 & 4 & 9 \end{pmatrix} \begin{pmatrix} 1 & 6 & 7 \\ 2 & 5 & 8 \\ 3 & 4 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 6 & 7 \\ 2 & 5 & 8 \\ 3 & 4 & 9 \end{pmatrix} $$
Block-recursive Peano Element Order

- indexing according to iteration of a Peano curve

- in practice: stopped on \(L1\) blocks
 (size tuned to L1 cache \(\rightarrow\) 2 matrix blocks should fit)

- use column-major layout within L1-blocks
Block-recursive Multiplication

- multiplication of block matrices (cmp. 3 × 3-scheme):

\[
\begin{pmatrix}
 P_{A0} & R_{A5} & P_{A6} \\
 Q_{A1} & S_{A4} & Q_{A7} \\
 P_{A2} & R_{A3} & P_{A8}
\end{pmatrix}
\begin{pmatrix}
 P_{B0} & R_{B5} & P_{B6} \\
 Q_{B1} & S_{B4} & Q_{B7} \\
 P_{B2} & R_{B3} & P_{B8}
\end{pmatrix} =
\begin{pmatrix}
 P_{C0} & R_{C5} & P_{C6} \\
 Q_{C1} & S_{C4} & Q_{C7} \\
 P_{C2} & R_{C3} & P_{C8}
\end{pmatrix}
\]

- leads to **eight** different combinations (w.r.t. block numbering):

 \[
 PP \rightarrow P \quad QR \rightarrow S \quad RS \rightarrow R \quad SQ \rightarrow Q

 PR \rightarrow R \quad QP \rightarrow Q \quad RQ \rightarrow P \quad SS \rightarrow S
 \]

- all schemes similar to **PP → P** (but revers order)
Increment/Decrement access to elements

\(O(k^3) \) operations on any block of \(k^2 \) elements
Parallelisation: *Owner-Computes*-Partitioning

Partition matrix C according to Peano order \rightarrow defines thread
Parallelisation: *Owner-Computes-Partitioning*

Partition matrix C according to Peano order $→$ defines thread
Parallelisation: Work-Oriented-Partitioning

Partition element operations according to 3D Peano order → defines thread
Parallelisation: Work-Oriented-Partitioning

Partition element operations according to 3D Peano order → defines thread
“Peano” Multiplication – Properties

- access to matrix elements entirely local: use increment and decrement operators only
- optimal re-use of data: $O(k^3)$ operations on any block of k^2 contiguous elements
- number of cache misses on an ideal cache (M lines of length L):
 $$O\left(\frac{N^3}{L\sqrt{M}}\right)$$
 shown to be asymptotically optimal
- results can be extended to Parallel External Memory model