Introduction to CUDA

Oliver Meister
October 22nd 2014
References

- D. Kirk, W. Hwu: *Programming Massively Parallel Processors*, Morgan Kaufmann, 2010
Motivation

Currently there are two opportunities of parallelizing programs

multi-cores

- distribute the work on few strong multi-purpose processors (CPUs)
- regular supercomputers, clusters
- OpenMP, MPI

many-cores

- distribute the work on a lot of single purpose processors
- Intel MIC, BlueGene, GPUs
CPU

- general purpose
- large amount of transistors for non-computational tasks
- allows out of order execution
- pipelining
- optimized for sequential tasks

GPU

- many processors dedicated to computations
- less support for branching
- well aligned data streamed through processor – data parallelism
GPU Computing – Timeline

- 80s/90s: fixed-function graphics pipelines
- 2000: programmable real-time graphics, vertex/pixel shaders
- 2003: ”GPGPU”, parallel programmable hardware exploited for general purposes
- 2007: GPU Computing, many-core architecture, CUDA and OpenCL programming models
Different Programming Models for GPU

CUDA
- GPU - only
- standard formed by vendor (nVidia)
- adopts new architectures fast

OpenCL
- standard formed by consortium (Khronos Group)
- platform independent (also for ATI and CPU’s)
- slower development

We will use CUDA
- interface is easier to learn
- paradigms of GPU programming better understandable
GPU Architectures – NVIDIA Kepler

(source: NVIDIA – Kepler Whitepaper)
GPU Architectures – NVIDIA Kepler (2)

(source: NVIDIA – Fermi/Kepler Whitepapers)
GPU Architectures – NVIDIA Kepler (3)

(source: NVIDIA – Kepler Whitepaper)
CUDA – Architecture Model

Host & Device:
- host = CPU with main memory
- device(s) = GPU/coprocessor(s) with device memory

Hardware characteristics:
- massively parallel (thousands of cores)
- lightweight threads, hardware-supported
- massive parallelism hides memory latency; focus on data parallelism
Warps

- warp: set of 32 concurrent threads in a block
- only one (Fermi) / two (Kepler) instruction(s) per cycle per warp

Question: what happens when a warp executes a branch?

Host Memory

- slow access by PCI bus
- used as little as possible
CUDA – Programming Model

CUDA as extension of C:

- host code (program control) and device code (GPU) combined in a single C program
- device code consists of massively parallel *kernels* that are off-loaded to the GPU
- language extension for defining and calling kernels
- API function to allocate device/host memory, synchronize threads, etc.
- SIMD/SPMD (single instruction/program, multiple data)
Example: Matrix Multiplication

General Approach: PRAM program

\[
\begin{align*}
&\text{for } i \text{ from 1 to } n \text{ do (in parallel?)} \\
&\quad \text{for } k \text{ from 1 to } n \text{ do (in parallel?)} \\
&\quad \quad \text{for } j \text{ from 1 to } n \text{ do (in parallel?)} \\
&\quad \quad \quad C[i,k] += A[i,j]*B[j,k]
\end{align*}
\]
Example: Matrix Multiplication

General Approach: PRAM program

\[
\text{for } i \text{ from } 1 \text{ to } n \text{ do in parallel}
\]
\[
\quad \text{for } k \text{ from } 1 \text{ to } n \text{ do in parallel}
\]
\[
\quad \quad \text{for } j \text{ from } 1 \text{ to } n \text{ do}
\]
\[
\quad \quad \quad C[i,k] \ += A[i,j] \times B[j,k]
\]

- PRAM: executed on \(n^2\) processors
- CUDA: \(n^2\) CUDA threads; each thread executes one \(j\)-loop (i.e., computes one element \(C[i,k]\))
- part 1: memory transfer (host \(\rightarrow\) device and device \(\rightarrow\) host)
- part 2: launch/execution of kernel code for \(j\)-loop
CUDA Memory transfer

Memory instructions in CUDA:

- Memory allocation:
 \[
 \text{cudaMalloc(} \text{void**}} \text{ ppd, int size); \]

- Memory deallocation:
 \[
 \text{cudaFree(} \text{void*}} \text{ pd); \]

- Copy from host to device:
 \[
 \text{cudaMemcpy(pd, p, size, cudaMemcpyHostToDevice)}; \]

- Copy from device to host:
 \[
 \text{cudaMemcpy(p, pd, size, cudaMemcpyDeviceToHost)}; \]
Matrix Multiplication – Memory Transfer

```c
__host__ void matrixMult(float *A, float *B,
                          float *C, int n);
```

Task:

- Write the memory transfer code for a matrix multiplication $C \leftarrow C + A \cdot B$, i.e. allocate device data, copy data between host and device and deallocate device data. All matrices have size $n \times n$.
Matrix Multiplication – Memory Transfer

```c
__host__ void matrixMult(float *A, float *B, float *C, int n) {
    int size = n*n*sizeof(float);
    float* Ad; float* Bd; float* Cd;
    cudaMalloc((void**)&Ad, size);
    cudaMalloc((void**)&Bd, size);
    cudaMalloc((void**)&Cd, size);
    cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);
    cudaMemcpy(Cd, C, size, cudaMemcpyHostToDevice);
    /* ... perform multiplication on device ... */
    cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);
    cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
}
```
Grids and Blocks in CUDA

Blocks:
- threads can be organized as 1D, e.g. (128,1,1), 2D, e.g. (16,16,1), or 3D, e.g. (4,8,16) blocks
- limited to 1024 (Fermi, Kepler), 512 (GT2xx) threads per block
- threads in one block are always executed in parallel
- and can use separate, shared memory

Grids:
- \texttt{dim3}, but 2D layout (3rd component ignored)
- up to $2^{32} \times 2^{32}$ (Kepler) / $2^{16} \times 2^{16}$ (\textless= Fermi) blocks per grid
- blocks in a grid may be executed in parallel
 (but, in practice, will be scheduled to available cores)
Kernel Invocation: Grids and Blocks

```c
/* ... */
dim3 dimBlock(n,n);
dim3 dimGrid(1,1);
matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/* ... */
```

- threads are combined to 3D **blocks**:
 → `threadIdx.x`, `threadIdx.y`, `threadIdx.z`
- blocks are combined to 2D **grids**:
 → `blockIdx.x`, `blockIdx.y`
Matrix Multiplication – CUDA Kernel

```c
__global__ void matrixMultKernel(float* Ad, float* Bd, 
                               float* Cd, int n) {

    int i = threadIdx.x;
    int k = threadIdx.y;
    float Celem = 0;
    for(int j=0; j<n; j++) {
        float Aelem = Ad[i*n+j];
        float Belem = Bd[j*n+k];
        Celem += Aelem*Belem;
    }
    Cd[i*n+k] += Celem;
}
```
Matrix Multiplication – with Grid

```c
__global__ void matrixMultKernel(float* Ad, float* Bd, float* Cd, int n);
```

Task:

- Extend the kernel from a single block to a grid with multiple blocks. Each block should have the size $TILE_SIZE \times TILE_SIZE$.
- Change grid and block dimensions in the kernel invocation accordingly.
Matrix Multiplication – with Grid

```c
__global__ void matrixMultKernel(float* Ad, float* Bd, float* Cd, int n) {
    int i = blockIdx.x * TILE_SIZE + threadIdx.x;
    int k = blockIdx.y * TILE_SIZE + threadIdx.y;
    float Celem = 0;
    for(int j=0; j<n; j++) {
        float Aelem = Ad[i*n+j];
        float Belem = Bd[j*n+k];
        Celem += Aelem*Belem;
    }  
    Cd[i*n+k] += Celem;
}
```
Matrix Multiplication – with Grid (2)

```c
/* ... */
dim3 dimBlock(TILE_SIZE,TILE_SIZE);
dim3 dimGrid(n/TILE_SIZE,n/TILE_SIZE);
matrixMultKernel<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/* ... */
```

- What is the optimal tile size?

- Too small → large overhead, low performance
- Too large → block size limit, register limit

- $TILE_SIZE^2 \leq$ max. threads per block
 - Fermi, Kepler: 1024
 - Choose $TILE_SIZE = 32$ (for now)

- If not 32 $| n $: padding of matrix to match tile size
 - $n \left\lceil \frac{n}{32} \right\rceil \cdot 32$

Let's compare CPU/GPU performance!

⇒ Okay, that sucks.
Matrix Multiplication – with Grid (2)

/* ... */
dim3 dimBlock(TILE_SIZE,TILE_SIZE);
dim3 dimGrid(n/TILE_SIZE,n/TILE_SIZE);
matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/* ... */

- What is the optimal tile size?
- Too small \rightarrow large overhead, low performance
- Too large \rightarrow block size limit, register limit
- $\text{TILE_SIZE}^2 \leq \text{max. threads per block}$
 - Fermi, Kepler: 1024 \Rightarrow choose $\text{TILE_SIZE} = 32$ (for now)
- If not $32 \mid n$: padding of matrix to match tile size
 $(n \leftarrow \left\lceil \frac{n}{32} \right\rceil \cdot 32)$
Matrix Multiplication – with Grid (2)

```c
/* ... */
dim3 dimBlock(TILE_SIZE,TILE_SIZE);
dim3 dimGrid(n/TILE_SIZE,n/TILE_SIZE);
matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/* ... */
```

- What is the optimal tile size?
- Too small \rightarrow large overhead, low performance
- Too large \rightarrow block size limit, register limit
- $\text{TILE_SIZE}^2 \leq \text{max. threads per block}$
 Fermi, Kepler: 1024 \Rightarrow choose $\text{TILE_SIZE} = 32$ (for now)
- If not $32 | n$: padding of matrix to match tile size
 $n \leftarrow \left\lceil \frac{n}{32} \right\rceil \cdot 32$

Let’s compare CPU/GPU performance!
Matrix Multiplication – with Grid (2)

```c
/* ... */
dim3 dimBlock(TILE_SIZE,TILE_SIZE);
dim3 dimGrid(n/TILE_SIZE,n/TILE_SIZE);
matrixMultKernel<<<dimGrid,dimBlock>>>(Ad,Bd,Cd,n);
/* ... */
```

- What is the optimal tile size?
- Too small \Rightarrow large overhead, low performance
- Too large \Rightarrow block size limit, register limit
- $\text{TILE_SIZE}^2 \leq \text{max. threads per block}$
 - Fermi, Kepler: 1024 \Rightarrow choose $\text{TILE_SIZE} = 32$ (for now)
- If not $32 | n$: padding of matrix to match tile size

 \[n \left\lceil \frac{n}{32} \right\rceil \cdot 32 \]

Let’s compare CPU/GPU performance! \Rightarrow Okay, that sucks.
CUDA Memory

Types of device memory in CUDA:

- per thread: registers and local memory
 (locally declared variables and arrays (local memory), → lifetime: kernel execution)

- per block: shared memory
 (keyword __shared__, lifetime: kernel execution)

- per grid: global memory and constant memory
 (keywords __device__, __constant__; lifetime: entire application)

- vs.: CPU cache hierarchy (registers, caches, RAM)
Matrix Multiplication – Performance Estimate

Multiplication kernel:

```c
for(int j=0; j<n; j++) {
    float Aelem = Ad[i*n+j];
    float Belem = Bd[j*n+k];
    Celem += Aelem*Belem;
}
```

- NVidia NVS 5200M stats: memory bandwidth: 14.4 GB/s, floating point performance: 240 GFlop/s
- two floating-point operations (multiply and add) per two floating-point variables (each 4 byte)
- thus: max. of 3.6 Giga float variables can be transferred from global memory per second
- limits performance to < 4 GFlop/s
Matrix Multiplication with Tiling

- observation: simple matrix multiplication kernel is slow (far below peak performance)
- anticipated reason: redundant access to slow global memory; performance limited by memory bandwidth between global memory and CUDA cores (each entry is loaded n times)

Remedy: Tiling
- switch to tile-oriented implementation (matrix multiplication on sub-blocks)
- copy matrix tiles into shared memory
- let all threads of a block work together on shared tile
- accumulate result tile back on matrix in global memory
A Note on Synchronization

Barrier-synchronization in CUDA:

```c
__syncthreads();
```

- barrier for all threads within a block
- usual rules: all threads need to execute (or not) the same(!) call to `__syncthreads()`
- threads of the same block scheduled to the same hardware unit
- in contrast: no synchronization features for threads in a grid → reason: *transparent scheduling* of entire blocks
Matrix Multiplication – with Tiles

```
__global__ void matrixMultKernel(float* Ad, float* Bd,
                                 float* Cd, int n) {

    __shared__ float Ads[TILE_SIZE][TILE_SIZE];
    __shared__ float Bds[TILE_SIZE][TILE_SIZE];

    int tx = threadIdx.x;
    int ty = threadIdx.y;
    int i = blockIdx.x * TILE_SIZE + tx;
    int k = blockIdx.y * TILE_SIZE + ty;
    /* (cont.) */

    Task:
    • Copy matrix tiles of A and B from global to shared memory.
    • Execute matrix multiplication on shared tiles and write the
      result to matrix C in global memory.
    • Synchronize the thread block where it is necessary.
```