Tutorial: Organizational remarks

Oliver Meister

October 8thth 2014
References

• D. Kirk, W. Hwu:

 Programming Massively Parallel Processors, Morgan Kaufmann, 2010
HPC tutorial

- Purpose: Teach parallel computing
- Parallelization hierarchy: Distributed memory (MPI), shared memory (OpenMP, TBB), vectorization (SSE, AVX)
- We will focus on vectorization, but on a larger scale
- Use GPUs for parallel computing: GPGPU computing
- Domain-specific parallel programming language: CUDA
CUDA minimum requirements

- CUDA-capable Nvidia GPU:
- (Linux) Check your hardware by typing `lspci | grep VGA` into a terminal
- Up-to-date graphics drivers (current version: 344.16)
- CUDA Toolkit (current version: 6.5)
CUDA minimum requirements (2)

- (Windows) Microsoft Windows XP or Windows Server 2008
- (Windows) Microsoft Visual Studio 2008 or a corresponding version of Microsoft Visual C++ Express
- (Windows) TUM students get free educational licenses for Microsoft products at http://maniac.tum.de/
- (Linux) Up-to-date Linux version (i.e. Ubuntu 12.04, OpenSUSE 13.1, etc.) with gcc 4.x
CUDA installation steps

For details, refer to the Getting Started Guides for Windows/Linux/Mac on https://developer.nvidia.com/cuda-downloads

- Download CUDA toolkit from here:

- (Linux) Execute the .run file or install debian package .deb, update package list sudo apt-get update and install sudo apt-get install cuda
Compiling CUDA-code

- (Linux) Open a terminal
- (Linux) Type `export PATH=$PATH:/usr/local/cuda/bin` to include the CUDA binary path
- (Linux) Again, type `export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib` for x86 systems
 - `/usr/local/cuda/lib64` for x64 systems
 - This includes the CUDA library path
- Now, compile your code using `nvcc <source files.cu>`
Remote compilation on MAC Cluster

What if no CUDA capable device is available?

- Fill the form for an account on our MAC cluster
- (Linux) Open an ssh connection via
 ssh -X mac-login-intel.tum-mac.cos.lrz.de
- Change your password after the first login using passwd
Remote compilation on MAC Cluster

- The cluster uses the SLURM scheduler (https://www.lrz.de/services/compute/linux-cluster/batch_parallel/) to allocate job time.
- Start an interactive shell on the NVidia nodes by executing `salloc --ntasks=1 --partition=nvd`
- Compile and run your code. When you are done, type `exit`
- There are only 4 Nvidia nodes. Allocation may take time, sometimes all nodes are blocked by other users.
- So be nice and don’t block a node for too long (max. 30 min)! Code offline, test online!