Complete the following assignments (alone or in a group), and send your source code via e-mail to meistero@in.tum.de until Sunday, December, 14th 2014.

Worksheet 4: Heat Equation in CUDA

T4.1: cuBLAS + ELLPACK

a) Write an ELLPACK matrix-vector multiplication kernel for the Heat Equation example code.
 i) Open kernels.cu and implement the ell_mat_vec_mm kernel:
 • Define grid and block size for the call to ell_mat_vec_mm
 • Assign a matrix row to each thread and let the kernel perform the inner loop.
 • Take care that access to the arrays indices and data is coalesced, access to x may be uncoalesced.
 ii) Open poisson.c and implement poisson_ellpack
 • Add instructions for cuBLAS context creation and destruction.
 • Use cuBLAS in order to execute vector algebra required for simulating the discretized heat equation.

b) Execute the code using ./sparse -H [<matrix size>]. If you have gnuplot installed you can uncomment #define GNUPLOT in poisson.c for visual output. Textual output for a matrix of size 64 × 64 should be:
 t = 0.0000, err = 1.4142e+00, Temperature at x = 0.5: 1.00000e+00
 t = 0.6450, err = 9.8181e-03, Temperature at x = 0.5: 6.9696e-01
 t = 1.2900, err = 5.1307e-03, Temperature at x = 0.5: 3.8419e-01
 t = 1.9350, err = 2.8166e-03, Temperature at x = 0.5: 2.1122e-01
 t = 2.5800, err = 1.5484e-03, Temperature at x = 0.5: 1.1613e-01
 (...)

1
H4.1: cuSPARSE

Write a cuSPARSE matrix-vector multiplication kernel for the Heat Equation example code.

a) Open poisson.c and implement poisson_cusparse. A sparse matrix in CSR format already exists.
 - Add instructions for cuSPARSE context creation and destruction.
 - Convert the CSR matrix to HYB format using cuSPARSE
 - Call cuSPARSE for matrix-vector multiplication in the time step loop
 - Use cuBLAS instructions for vector algebra, as in T4.1

b) Execute the code using ./sparse -H -C [<matrix size>] and check if the result is consistent with assignment T4.1b. How do performance of the ELLPACK and the cuSPARSE kernel compare for different matrix sizes?