Introduction to Scientific Computing II

Molecular Dynamics Simulation (3)

Michael Bader – SCCS

Summer Term 2012
MD – Implementational Aspects
 - Verlet Neighbour Lists
 - Linked-Cell Algorithm
 - Linked-Cell – Data Structures

MD – Parallelisation
 - Shared Memory Parallelisation
 - Force Decomposition
 - Spatial Decomposition
 - Domain Decomposition
MD – Implementational Aspects
 Verlet Neighbour Lists
 Linked-Cell Algorithm
 Linked-Cell – Data Structures

MD – Parallelisation
 Shared Memory Parallelisation
 Force Decomposition
 Spatial Decomposition
 Domain Decomposition
Verlet Neighbour Lists

- every molecule stores its neighbours for a distance $r_{\text{max}} > r_c$
- every n_{upd} time steps (dep. on r_{max}), the lists are updated
- the "buffer" has to be larger than the covered distance of a molecule for that time:

$$r_{\text{max}} - r_c > n_{\text{upd}} \Delta t v_m$$
Classical Linked-Cell Algorithm

molecules arranged in a lattice of cubic cells of side length $\sim r_c$

- hash table with "geometrically motivated" hash function
- "Binning" resp. "Bucketing"-techniques from "Computational Geometry"
- direct volume representation (voxel) of the influence region
Classical Linked-Cell Algorithm

molecules arranged in a lattice of cubic cells of side length $\sim r_c$

- runtime: $\mathcal{O}(n)$
- only half (point symmetry) of the neighbour cells are explicitly traversed (Newton’s 3rd law)
- erase and generate the data structure in each time step
Variable Linked-Cell Algorithm

- Lattice might be built up from cells of side length \(\frac{rc}{t} \) with \(t \in \mathbb{R}^+ \)
- Integer numbers are preferable for the divisor \(t \in \mathbb{N} \)
- For \(t \to \infty \), the examined influence volume will converge to the (optimal) sphere
Linked-Cell Algorithm – Data Structure I

- cells are stored as a one-dimensional array (vector)
- intrusive list for the cell molecules
- list to determine the processing sequence
• offset mask to determine the neighbours
• cache efficiency is influenced by the processing order (temporal locality)
MD – Implementational Aspects
Verlet Neighbour Lists
Linked-Cell Algorithm
Linked-Cell – Data Structures

MD – Parallelisation
Shared Memory Parallelisation
Force Decomposition
Spatial Decomposition
Domain Decomposition
MD – Parallelisation

Profiling

Profiling seq. MD code (LJ 12-6)

→ force calculation is dominating
Shared Memory Parallelisation

- each process calculates one part ($\frac{N}{p}$) of the molecules (cells)
- availability of all relevant data (position) because of common memory
- “Shared Memory” algorithm: Velocity Störmer Verlet method
 1. parallel explicit Euler method r, v (half step) for $\frac{N}{p}$ molecules
 2. parallel force calculations for $\frac{N}{p}$ molecules or the respective cells
 (force summation critical, respecting Newton's 3rd law: reduction; same with linked-cell algorithm)
 3. parallel implicit Euler method v (half step) for $\frac{N}{p}$ molecules
Replicated Data I

- use shared-memory approach also for distributed memory architectures
- every node has to store all position data
- collective communication for the synchronization of redundant data
- result: "Atom Decomposition" algorithm:
 - Velocity Störmer Verlet method
 1. explicit Euler method r, v (half step) for $\frac{N}{p}$ molecules
 2. distribute (gather-to-all) the $\frac{N}{p}$ position data for each PE to all other PEs
 3. force calculation for $\frac{N}{p}$ molecules
 4. possible distribution of partial forces to the appropriate PEs
 5. implicit Euler method for v (half step) for $\frac{N}{p}$ molecules
Replicated Data II

- costs
 - calculation: \(\frac{N}{p} \)
 - communication partners per PE: \(p - 1 \)
 - memory requirements: \(N \) positions and \(\frac{N}{p} \) forces
Replicated Data II – Exploit Symmetry

- calculation: \(\frac{N}{2p} \)
- communication partners per PE: \(p - 1 \)
- memory requirements: taking advantage of Newton's 3rd law needs a vector for \(N \) (partial) forces and additional communication
Force Decomposition I

- each process calculates a part of the molecules and the force matrix
- on each node: position data of \(2 \frac{N}{\sqrt{p}}\) molecules
- communication: distribution of positions and calculated forces
- ”Force Decomposition” algorithm: Velocity Störmer Verlet method
 1. explicit Euler method for \(r, v\) (half step) for \(\frac{N}{p}\) molecules
 2. distribution of \(\frac{N}{p}\) position data per PE to \(2(\sqrt{p} - 1)\) PEs
 3. force calculation of a \(\frac{N}{\sqrt{p}} \times \frac{N}{\sqrt{p}}\) sub-matrix
 4. distribution of partial forces to \(\sqrt{p} − 1\) PEs
 5. implicit Euler method for \(v\) (half step) for \(\frac{N}{p}\) molecules
Force Decomposition II – Costs

- calculation: \(\frac{N}{p} \)
- communication partners per PE: 2 \((\sqrt{p} - 1)\)
Spatial Decomposition

- domain is decomposed into subdomains
- each processor handles one subdomain
- amount of molecules per processor is variable (molecules are moving!)
- overlapping buffer regions (halo, r_c) have to be synchronized
Spatial Decomposition

- overlapping buffer regions (halo, r_c) have to be synchronized
- point-to-point communication, dependent of
 - decomposition
 - molecule movement (flow velocity)
 - communication method: "x-y-z" vs. "direct"
Domain Decomposition: Cubes \leftrightarrow Slices (1)

- assumption:
 - homogeneous molecule distribution
 - subdomains with $\frac{N}{p}$ molecules and volume $\frac{L^d}{p}$: $N \leftrightarrow L^d$
 - communication size proportional to halo volume

- slices:
 - 2 neighbour PEs
 - halo volume: $L^{d-1}2r_c = 2L^d\frac{r_c}{L}$
 - relatively easy to implement
 - bad scaling properties

- communication
 - amount: $2p$
 - ratio molecules to comm.: $\frac{L^d}{p} : 2L^d\frac{r_c}{L} = \frac{L}{2r_c p}$
Domain Decomposition: Cubes ↔ Slices (2)

- same assumptions
- cubes:
 - $3^d - 1$ neighbour PEs
 - side length: $l = \sqrt[d]{\frac{L^d}{p}} = \frac{L}{\sqrt[d]{p}}$
 - halo volume:
 \[
 (l + 2r_c)^d - l^d = \sum_{i=1}^{d} \binom{d}{i} l^{d-i} (2r_c)^i
 \approx \binom{d}{1} l^{d-1} 2r_c
 = 2d l^d r_c = 2d L^d p^{1-d-1} \frac{r_c}{L}
 \]
- communication
 - amount: $(3^d - 1) p$ (direct) or $2d \cdot p$ (x-y-z)
 - ratio molecules to comm.:
 \[
 \frac{\frac{L^d}{p}}{2d L^d p^{1-d-1} \frac{r_c}{L}} = \frac{p^2 L}{2dp^{1-d} r_c}
 \]