2. Multigrid

May 14, 2012
Multigrid - error frequency

Low-frequency errors on fine grids become high-frequency errors on coarse grids

- k-th eigen vector of iteration matrix r generated by
 \[v_j^k = \sin \left(\frac{kJ \pi}{n+1} \right) = \sin (k \pi \cdot j \cdot h) \]

- high frequent: $k > n/2$

- Example: wave with $k = 4$ on two grids

Figure: $v_j^4 = \sin \left(\frac{4 \cdot \pi \cdot j}{12} \right)$ on a grid with meshwidth $h = 1/12$.

Figure: $v_j^4 = \sin \left(\frac{4 \cdot \pi \cdot j}{6} \right)$ on a grid with meshwidth $h = 1/6$.
Two-Grid - Correction Scheme

1. Relaxation step:
 \[u_h^{(n)} = f_h \]

2. Compute fine-grid residual:
 \[r_h = f_h - A_h v_h \]

3. Restrict residual to the coarse grid:
 \[r_{2h} = R_{2h} h r_h \]

4. Solve/relax on the coarse grid:
 \[A_{2h} e_{2h} = r_{2h} \]

5. Interpolate coarse grid error to the fine grid:
 \[e_h = P_{2h} e_{2h} \]

6. Correct fine grid solution:
 \[v_h = v_h + e_h \]

7. Relaxation step again:
 \[u_h^{(n+1)} = f_h \]

2. Multigrid
Scientific Computing II, Wolfgang Eckhardt
Two-Grid - Correction Scheme

- relax n_1 times on $A^h u^h = f^h$ on Ω^h with initial guess v^h

- compute fine-grid residual $r^h = f^h - A^h v^h$, restrict it to the coarse grid by $r^{2h} = R^h r^h$

- solve / relax on $A^{2h} e^{2h} = r^{2h}$ on the coarse grid

- interpolate coarse grid error to the fine grid by $e^h = P^h e^{2h}$

- correct fine grid solution by $v^h = v^h + e^h$

- relax n_2 times on $A^h u^h = f^h$ with corrected guess v^h.
Two-Grid - Example

Standard example: 1d Poisson-Equation

\[-u'' = 0 \quad \text{in }]0; 1[, \]
\[u = 0 \quad \text{at } \partial]0; 1[.\]

\[h = \frac{1}{64} \quad \text{with initial guess}\]

\[x_j^h = \frac{1}{2} \left[\sin \left(\frac{16j\pi}{n} \right) + \sin \left(\frac{40j\pi}{n} \right) \right]\]

We perform

- 3 Damped-Jacobi-iterations on the fine grid (presmoothing)
- 3 Damped-Jacobi-iterations on the coarse grid
- 3 Damped-Jacobi-iterations on the fine grid (postsmoothing)
Two-Grid - Example

After three smoothing steps, the high-frequency part of the error is smooth, the low-frequency part dominates.
Two-Grid - Example

Figure: After the coarse-grid correction, the low-frequency part is reduced drastically, mainly high-frequencies remain.

Figure: The high-frequency error is smoothed.
Multigrid - V-Cycle

Idea: Apply Correction-Scheme recursively, up to the coarsest grid level.

\(v^h = \text{procedure } \text{VCycle}(v^h, f^h) \)

1. Relax \(n_1 \) times on \(A^h u^h = f^h \) with given initial guess \(v^h \).
2. If \(\Omega^h = \text{coarsest grid} \) then goto step 4.
 Else
 \(f^{2h} = R^h \cdot \text{res}^h \),
 \(v^{2h} = 0 \),
 \(v^{2h} = \text{VCycle}(v^{2h}, f^{2h}) \).
3. Correct \(v^h = v^h + P_{2h}^h v^{2h} \)
4. Relax \(n_2 \) times on \(A^h u^h = f^h \) with corrected initial guess \(v^h \).