Scientific Computing II

Iterative Solvers

Exercise 1: Repetition "Finite Differences"

Consider the one-dimensional Poisson equation with homogeneous Dirichlet conditions

\[
\begin{align*}
\frac{d^2 u}{dx^2} &= f(x), \quad x \in (0,1), \\
u(0) &= u(1) = 0.
\end{align*}
\] (1)

(a) Discretise the Poisson equation by finite differences using an equidistant mesh size \(h = 1/N \) and \(N + 1 \) grid points.

(b) Write the finite difference approximation from (a) in matrix-vector form \(Au = b \). Therefore, define the entries of the matrix \(A \in \mathbb{R}^{N+1 \times N+1} \).

Row-Wise Derivation of Smoothers

Besides the matrix-based derivation (see lecture slides), most smoother methods can also be easily derived row-wise. Each row of the linear system reads:

\[
\sum_j A_{ij}u_j = b_i, \quad i = 1, \ldots, N.
\] (2)

Solving each equation for \(u_i \) results in

\[
u_i = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij}u_j \right).
\] (3)

• Jacobi method

We solve the right hand side of Eq. (3) using the iterative solution at iteration step \(n \) and obtain the new iterative solution \(n + 1 \):

\[
u_i^{(n+1)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij}u_j^{(n)} \right).
\] (4)
• **Weighted Jacobi method**

We introduce a weighting factor ω and split the left hand side $u_i = \frac{1}{\omega} u_i + (1 - \frac{1}{\omega}) u_i$. We can now evaluate parts of u_i at (n) or $(n+1)$. We obtain:

$$\frac{1}{\omega} u_i^{(n+1)} + (1 - \frac{1}{\omega}) u_i^{(n)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} u_j^{(n)} \right)$$

$$\Leftrightarrow u_i^{(n+1)} = \omega \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} u_j^{(n)} \right) + (1 - \omega) u_i^{(n)}.$$ \hspace{1cm} (5)

The right hand side of the last equation corresponds to a weighted average of the last solution $u_i^{(n)}$ and the solution predicted by the (non-weighted) Jacobi method.

• **Gauss-Seidel method**

We solve the right hand side of Eq. (3) with both new and old values $u_j^{(n)}$, $u_j^{(n+1)}$. By this method, we can only use one array to store the solution u since we can immediately write the entries at $(n + 1)$ into the original positions of the solutions $u_j^{(n)}$. The method reads:

$$u_i^{(n+1)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j < i} A_{ij} u_j^{(n+1)} - \sum_{j > i} A_{ij} u_j^{(n)} \right).$$ \hspace{1cm} (6)

Exercise 2: Fourier Analysis for Jacobi Methods

For a vanishing function $f(x) = 0$, the finite difference representation of Eq. (1) reduces to

$$u_{i-1} - 2u_i + u_{i+1} = 0$$ \hspace{1cm} (7)

The trivial solution of our problem with homogeneous boundary conditions is given by the solution $u = 0$. We can now investigate the behaviour of the smoothers such as Jacobi methods for this “toy problem”.

(a) Formulate the Jacobi method for this case. Write the iteration scheme in the form

$$u_i^{(n+1)} = \sum_j M_{ij} u_j^{(n)};$$ \hspace{1cm} (8)

give an explicit representation of the iteration matrix M in this equation. Hint: use the formula for the iteration matrix $M := I - D^{-1} A$ from the lecture slides to construct the row-wise (matrix-free) update rule.

(b) Similar to Neumann stability analysis, we consider initial conditions $u_i^{(0)} = g^k_i := \sin(\pi k (ih))$ where $k \in \{0, ..., N-1\}$. What happens to the solution after one iteration step? Which convergence rate does this result invoke for the overall iteration for any initial condition g^k?

(c) Carry out the same analysis for the weighted Jacobi method with iteration matrix $M := I - \omega D^{-1} A$. What can you say in this case about the convergence rate?