Incomplete Cholesky Decomposition

Programming Exercise 7: Incomplete Cholesky Decomposition

In the following, we review the incomplete Cholesky factorisation which computes an approximation \(\tilde{A} \in \mathbb{R}^{N \times N} \) to a matrix \(A \approx \tilde{A} \). We decompose \(\tilde{A} \) into a lower left triangular matrix \(L \) and—analogous to the slides from the lecture—a diagonal matrix \(D \) such that

\[
\tilde{A} = LD^{-1}L^\top:
\]

for \(i = 1 \) to \(N \) do
 for \(j = 1 \) to \(i-1 \) do
 \[
 L_{ij} = A_{ij} - \sum_{k=1; (i,k),(j,k) \in S}^{j-1} L_{ik}D_{kk}^{-1}L_{jk} \quad \text{if} \quad (i, j) \in S
 \]
 end
 \[
 L_{ii} = D_{ii} = A_{ii} - \sum_{k=1; (i,k) \in S}^{i-1} L_{ik}^2D_{kk}^{-1}
 \]
end

where \(S \) denotes the set of all indices \((i, j) \) with \(A_{ij} \neq 0 \).

(a) For which matrices can we apply the (incomplete) Cholesky decomposition?

(b) Implement the algorithm in a matlab function `incompleteLDL(A)` which returns the matrices \(L, D^{-1} \).
 Test your algorithm using a 2D Poisson problem with Dirichlet conditions as input. The respective stencil reads

\[
S := \begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix}
\]

for all inner points. Write a function `generate2DPoisson(x, y)` which for a given number of grid points \(x \times y \) generates the (full) matrix \(A \). Include both inner and Dirichlet boundary points into the matrix description. You may use a lexicographic ordering of the grid points.

Validate your implementation by comparison with Matlab’s internal routine `ichol(A)`.

Hint: `ichol(A)` works on matrices in sparse format only. You may use Matlab’s routines `full(sparseMatrix)` to convert a sparse matrix into a full matrix and `sparse(matrix)` to convert a full matrix into a sparse matrix.
(c) Optimise your implementation incompleteLDL(A) such that you obtain a matrix-free (with respect to the input data) incomplete LDL-factorisation. The corresponding function incompleteLDLPoisson2D(x,y) only takes the number of grid points \(x \times y \) as arguments.

Validate your implementations by comparing the resulting matrices \(L \) and \(D^{-1} \) with the results from incompleteLDL(A).

What is the complexity of your optimised implementation?

Solution:

(a) The decomposition works for symmetric positive definite matrices.

(b) See generate2DPoisson.m, incompleteLDL.m and exercise7.m. We compare Matlab’s matrix \(L_{\text{matlab}} \) and our matrices \(L, D^{-1} \) by computing \(\tilde{L} := L \cdot D^{-1/2} \) where \(D^{-1/2} \) is a diagonal matrix with entries \((D^{-1/2})_{ii} = \sqrt{D_{ii}^{-1}}\). Both matrices \(\tilde{L} \) and \(L_{\text{matlab}} \) should be identical.

(c) See incompleteLDLPoisson2D.m and exercise7.m. Considering the nested for-loops \((xx,yy)\) in the function, we observe that we have a \(O(N) \)-algorithm.