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Abstract We focus on the solution of discrete deconvolution problems to recover
the original information from blurred signals in the presence of Gaussian white noise
more accurately. For a certain class of blur operators and signals we develop a diago-
nal preconditioner to improve the reconstruction quality, both for direct and iterative
regularization methods. In this respect, we incorporate the variation of the signal data
during the construction of the preconditioner. Embedding this method in an outer iter-
ation may yield further improvement of the solution. To estimate the optimal number
of iterations in connection with (P)CGLS, we provide a comparison between different
L-curve approaches, especially based on B-splines, and the Discrepancy Principle.
Reconstructions of numerous discrete ill-posed model problems, arising both from
realistic applications and examples generated on our own, demonstrate the effect of
the presented approach.
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1 Introduction

We consider the discrete ill-posed linear model problem

x blur−→ Hx noise−→ Hx+η = b (1.1)

where x ∈ Rn is the original signal or image, H ∈ Rn×n is the blur operator, η ∈ Rn

is a vector representing the unknown perturbations such as noise or measurement
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2 T. Huckle, M. Sedlacek

errors, and b ∈ Rn is the observed signal and image, respectively. Our aim is to re-
cover x as good as possible. Because H may be extremely ill-conditioned or even
singular, and, because of the presence of the noise, the direct solution of (1.1) will
result in a useless reconstruction dominated by noise. Consequently, to avoid this and
solve (1.1) mainly on the signal subspace, corresponding to large singular values, a
regularization technique has to be applied.

Direct regularization methods compute the solution via direct computation. Based
on a decomposition of H, like, for instance, the QR factorization or the singular value
decomposition (SVD) [6], these methods can be seen as a spectral filter acting on the
singular spectrum, diminishing the deterioration of the solution by noise. Within this
class we focus on the classical Tikhonov-Phillips regularization [26,27] and the trun-
cated SVD (TSVD) [11,14]. The Tikhonov regularization can often be improved by
including minimization in a seminorm. Usually, the seminorm is related to a smooth-
ing operator like, for instance, the Laplacian.

Another class of regularization methods is based on iterative solvers, e.g., Krylov
subspace methods. The usual observation, which coincides, for instance, with the
Conjugate Gradient (CG) [1,5] convergence analysis is that in the first iterations the
error is reduced relative to large eigenvalues. In later steps, the eigenspectrum related
to noise and small eigenvalues dominates the evolution of the approximate solution.
Therefore, the restoration has to stop after a few iterations before the method starts
to reduce the error relative to the noise subspace. We decide to use CGLS [2] in this
class as, here, it becomes possible to estimate the optimal number of iterations via
discrete L-curves [12,18].

Applying a preconditioner to an iterative regularization method can have three
positive effects: reduce the necessary number of iterations to reach the best recon-
struction, result in a flat convergence curve such that it is easier to locate the iteration
number with the best solution, or – which is considered in this paper – result in a
better reconstruction of the original signal. In general, we have to expect that not all
three conditions can be reached simultaneously. In [21] we show that incorporating
the variation of the signal data during the construction of preconditioners and the ap-
plication within iterative methods can result in better or faster reconstructions. Further
and more detailed experiments revealed that it is sufficient to use a diagonal precondi-
tioner in common regularization methods to especially improve on the reconstruction
of signals which mainly consist of nearly zero components and are weakly blurred
by the operator H, i.e., the signal structure is mainly preserved. Embedding this ap-
proach in an iterative reconstruction process makes it possible to further enhance on
a current solution.

The outline of the paper is the following: In Section 2 we will have a closer
look on the regularization methods we use for the reconstruction. Subsequently, in
Section 3, we introduce a data based diagonal preconditioner to improve the recon-
struction of regularization methods by incorporating the values of the signal. As the
quality of (iterative) regularization methods depends on the estimation of the optimal
regularization parameter (number of iterations) we briefly examine two methods for
(P)CGLS on this in Section 4. Section 5 contains numerical results using the pro-
posed approaches for several test scenarios. A conclusion with a short outlook closes
the discussion in Section 6. Concerning our test scenarios, we mainly focus on dis-
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Data based regularization for discrete deconvolution problems 3

crete ill-posed problems from the package Regularization Tools [13], but we consider
artificial problems constructed on our own using blur operators from MATLAB [23]
as well.

2 Regularization methods for discrete ill-posed problems

2.1 TSVD and Tikhonov-Phillips Regularization

An intuitive approach to improve the reconstruction and circumvent the contribution
of noise to the solution would be to compute the solution merely on the signal sub-
space. Unfortunately, an explicit splitting into the signal and noise subspace is not
possible. Nevertheless, as large singular values correspond to the signal subspace, we
can shrink the SVD expansion such that the solution will mostly consist of quanti-
ties corresponding to the signal part, i.e., xk = ∑

k
i=1(u

T
i b)σ−1

i vi which is equivalent
to solving minx ‖x‖2 with subject to minx ‖Hkx−b‖2, where the rank deficient and
better conditioned coefficient matrix Hk is the closest rank-k approximation to H.
This direct regularization method is known as truncated singular value decomposi-
tion (TSVD) [11,14].

Another and one of the classical regularization methods is the Tikhonov regular-
ization [27] which solves

min
x

{
‖Hx−b‖2

2 +α
2 ‖x‖2

2

}
⇔ (HT H +α

2I)x = HT b (2.1)

instead of (1.1), for a fixed regularization parameter α ≥ 0. The weight α has to be
chosen such that both minimization criterions yield the minimal value together: the
computed solution x is as close as possible to the original problem and sufficiently
regular.

For the nontrivial task of finding the optimal regularization parameter, for exam-
ple, α2 for Tikhonov, the truncation index k for the TSVD, or the number of iterations
for iterative regularization methods, there exist several well-known parameter estima-
tion methods like, for instance, the Discrepancy Principle [14], the L-curve criterion
[12,18], or the Generalized Cross Validation (GCV) [14]. Among these, the (discrete)
L-curve criterion is the most robust one [14]. Therefore, we use it for our results.

2.2 Regularization including a seminorm

Following [9,14,15], instead of using the 2-norm as a means to control the error in
the regularized solution, another possibility is to use discrete smoothing norms of the
form ‖Lx‖2 to obtain regularity. With L being a discrete approximation to a derivative
operator, the standard form problem (2.1) can be reformulated as Tikhonov-Phillips
regularization in general form via

min
x

{
‖Hx−b‖2

2 +α
2 ‖Lx‖2

2

}
⇔ (HT H +α

2LT L)x = HT b. (2.2)
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4 T. Huckle, M. Sedlacek

Usually, the matrix L is an approximation to the first or second derivative opera-
tor. Consequently, rough oscillations caused by noisy components can be suppressed
during the reconstruction and the regularized approximations will satisfy inherent
smoothness properties. Therefore, for problems where the exact signal x is smooth,
the solution of the general formulation (2.2), using a differential operator, will be
smoother and thus a more accurate reconstruction.

2.3 Regularization by preconditioned iterative methods

In connection with iterative methods there is usually demand for preconditioning to
accelerate the convergence by modifying the spectrum of the system. Concerning
discrete ill-posed problems the application of a preconditioner can easily lead to a
deterioration of the reconstruction by approximating the inverse also in the noise sub-
space, or by removing high-frequency components in the original signal. Therefore,
an optimal preconditioner should treat the large singular values and act only on the
signal part of the singular spectrum but have no effect on the smaller singular values
not amplifying the noise. Following [10], such a preconditioner M should have the
following properties:

x M ≈ |H|−1 on the signal subspace with |H|= (HT H)
1
2 , and

x M ≈ I or M ≈ 0 on the noise subspace.

For circulant matrices, the eigendecomposition is known and, therefore, these
conditions can be satisfied by manipulating the spectral values. Most of the precon-
ditioners make use of properties of structured matrices but for general blur operators,
this is usually not possible. In [21] we use the probing facility of MSPAI [20] in
order to derive a different approximation quality on the signal and noise subspace,
respectively, which in some cases leads to faster or better reconstructions.

In this paper, we use minimum-residual methods, as special projection methods,
which implicitly have the desired regularization property. We focus on (P)CGLS as
it is a stable way to implement the CG method on the normal equations for Least
Squares problems in the general case and because the L-curve criterion can be applied
[14]. In Section 4, we address to the algorithms used to estimate the regularization
parameter for our results. We reconstruct the observed signal by using two-sided pre-
conditioning within (P)CGLS according to [2]. Note that following [16], both MIN-
RES and GMRES are not suited for the reconstruction of ill-posed image deblurring
problems because they do not suppress the noise contribution sufficiently. Compared
to these two methods in general, MR-II [8] and RRGMRES [3] are superior when
used to reconstruct ill-posed problems.

3 Improving the regularized solution

3.1 Motivation for incorporating the signal data

In [21] we observed improved reconstructions using preconditioners which act dif-
ferently around discontinuities of the signal. This can be achieved by weighting those
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Data based regularization for discrete deconvolution problems 5

preconditioner components which affect such local effects. Smoothing, e.g. with
M = tridiag( 1

2 ,1,
1
2 ) makes sense to remove noisy components only as long as the data

is continuous. At discontinuities smoothing would cause additional errors. Therefore,
we used a modified tridiagonal smoothing preconditioner with j-th row of the form
(0, . . . ,0,r j−1,1,r j,0, . . . ,0) to obtain r j ≈ 1

2 near continuous components, but r j ≈ 0
near discontinuities. Hence, it may help to incorporate the behavior of the original
signal x or some approximation from previous steps, e.g., the blurred data vector b,
defining the preconditioner Mb with j-th row

(Mb) j,: :=(0, . . . ,0,r j−1,1,r j,0, . . . ,0) for r :=

(
1
2
· 1

1+
(
ρ
∣∣b j−b j+1

∣∣)k

)
j=1,...,n−1

.

The parameters ρ and k have to be chosen in such a way that discontinuities are
revealed as good as possible.

Further experiments showed that it is sufficient to use a weight-free diagonal pre-
conditioner. Nevertheless, applying smooth preconditioners, to eminently continuous
data does not destroy the reconstruction process but may lead to slight quality im-
provement for certain problems. For signals which consist of nearly zero components
and are only weakly blurred, i.e., if the signal structure is preserved, the incorporation
of the signal data in form of a diagonal matrix leads to better reconstruction results.
However, we want to point out that the idea of estimating the signal structure from the
data may not work for inverse problems where these two domains are fundamentally
different.

A motivation for the effectiveness of taking the signal values into account is the
following. Assume Dx+θ := diag

(
(x+ θ)1, . . . ,(x+ θ)n

)
is the diagonal precondi-

tioner built from an approximation x+θ of x, where x is the original (exact) signal
and θ is some deviation from x. Note that x+ θ can, but must not be the observed
right-hand side b. The computed solution x̃, i.e., the reconstruction, can be written as
x̃ = x+Dx+θ δ , with the deviation Dx+θ δ . To simplify the notation we use D := Dx+θ

and thus x̃ = x+Dδ .

Theorem 3.1 Assuming (x+θ) j=1,...,n 6= 0, the component-wise relative error of the
reconstruction x̃ of the unregularized equation HT Hx̃ = HT b is∣∣∣∣ (x̃− x) j

(x+θ) j

∣∣∣∣= ∣∣(UΣ
−1V T

η) j
∣∣ ,

where UΣV T is the spectral decomposition of DHT .

Proof.

HT Hx̃ = HT b ⇔ (DHT HD)D−1x̃ = DHT b ⇔
(DHT HD)D−1(x+Dδ ) = DHT (Hx+η) ⇔

(DHT HD)D−1(x+θ −θ +Dδ ) = DHT (HDD−1(x+θ −θ)+η).

Using the identity D−1(x+θ) =: 1 and the SVD of DHT =UΣV T we obtain

(DHT HD)(1+δ −D−1
θ) = DHT (HD1+η−Hθ) ⇔ DHT HDδ = DHT

η ⇔
(UΣV T )(UΣV T )T

δ = (UΣV T )η ⇔ δ =UΣ
−1V T

η . (3.1)
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6 T. Huckle, M. Sedlacek

Therefore, using the deviation (3.1), the computed solution is x̃ = x+D(UΣ−1V T η).
With the component-wise consideration

(x̃− x) j = D j(UΣ
−1V T

η) j = (x+θ) j(UΣ
−1V T

η) j

we receive the relative error with respect to the approximation x+θ as∣∣∣∣ (x̃− x) j

(x+θ) j

∣∣∣∣= ∣∣(UΣ
−1V T

η) j
∣∣ . ut

Hence, for a solution x̃ 6= 0, the relative error is in the order of the underlying data
noise η , if the elements of Σ−1 are not arbitrary large, i.e., Σ−1 ∈ O(1).

As the elements of Σ−1 usually can be arbitrary large, we get rid of the noise
contribution by truncating the small singular values in the original spectral decompo-
sition Σ0 and denote

Σ :=
(

Σk
0

)
with Σk := diag(σ1, . . . ,σk).

Theorem 3.2 Assuming (x+θ) j=1,...,n 6= 0, after truncating the small singular val-
ues, corresponding to noise, the component-wise relative error for the reconstruction
x̃ of (DHT HD)D−1x̃ = DHT b remains in the order of the underlying data noise η ,
i.e., ∣∣∣∣ (x̃− x) j

(x+θ) j

∣∣∣∣= ∣∣(UkΣ
−1
k V T

k η) j
∣∣ ∈ 1

σk
O(η).

Proof. Using (3.1) in (DHT HD)(1+δ −D−1θ) we obtain

(UΣV T )(UΣV T )T (1+δ −D−1
θ) =UΣΣ0UT (1−D−1

θ)+UΣ
2UTUΣ

−1V T
η ⇔

δ =
k

∑
j=1

(
σ0 j −σ j

σ j︸ ︷︷ ︸
≈0

u juT
j u juT

j

)
(1−D−1

θ)+
k

∑
j=1

(
1

σ2
j

u juT
j u jvT

j σ j

)
η ⇔

δ =
k

∑
j=1

(
1
σ j

u jvT
j

)
η =UkΣ

−1
k V T

k η .

For a solution x̃ 6= 0 and a given truncation index k, the component-wise relative error
with respect to the approximation x+θ is∣∣∣∣ (x̃− x) j

(x+θ) j

∣∣∣∣= ∣∣(UkΣ
−1
k V T

k η) j
∣∣︸ ︷︷ ︸

=:η̃ j

∈ 1
σk

O(η). ut

It remains in the order of the underlying data noise η . Note that this is true for the
2-norm as well, as∣∣∣∣ (x̃− x) j

(x+θ) j

∣∣∣∣≤ η̃ j ⇒
n

∑
j=1

(x̃− x)2
j ≤

n

∑
j=1

η̃
2
j (x+θ)2

j ⇒
‖x̃− x‖2
‖x+θ‖2

≤ ‖η̃‖2 ≤
1
σk
‖η‖2.
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Data based regularization for discrete deconvolution problems 7

3.2 Data based regularization methods

Due to the given signal x or b we construct the data based preconditioner D ∈ Rn×n

as a diagonal matrix with entries

(Dx)ii := |xi|+ ε and (Db)ii := |bi|+ ε,

respectively. The parameter ε is mandatory and should be chosen ε� 1 or ε ∈O(η)
if bi = 0, to guarantee the non-singularity of Db. For bi 6= 0 we can choose ε = 0. The
same holds for Dx.

Following our numerical tests, we received best results using D or D2 depending
on the regularization method. Other powers of D lead to less accurate approxima-
tions. For the TSVD the decomposition HD =UΣV T leads to the modified ill-posed
problem

(DHT HD)D−1x = DHT b⇔ x = DV Σ
−1UT b

while for Tikhonov regularization we use the direct application of D to define an
appropriate norm. We modify (2.1) to

(DHT HD)D−1x = DHT b ⇔ (DHT HD+α
2I)D−1x = DHT b ⇔

(HT H +α
2D−2)x = HT b ⇔ min

x

{
‖Hx−b‖2 +α

2‖x‖D−1
}

(3.2)

Although we observed improvement for (3.2), slightly better results can be obtained
by incorporating the signal values only once in the standard form of Tikhonov. There-
fore, we reconstruct the signal using D

1
2 in

min
x

{
‖Hx−b‖2 +α

2‖x‖
D−

1
2

}
⇔ (HT H +α

2D−1)x = HT b.

Using (P)CGLS as iterative regularization method we reconstruct the observed signal
by using split preconditioning with D

1
2 . Concerning the class of iterative regular-

ization methods, we also show the preconditioning effect for PMINRES [25] and
PMR-II [8] in Section 5.2.4.

3.3 Improvement by outer iterations

It is possible to further improve on a first computed solution and start an iterative
process of building diagonal preconditioners based on the current reconstruction. Fol-
lowing our Regularization with Outer Iterations (ROI) algorithm, we either use b or
a first reconstruction from an unpreconditioned regularization method as initial solu-
tion x̃(0). For a given number of steps we construct Dx̃(s) from a previously computed
reconstruction x̃(s−1) and compute a new solution x̃(s). As this approach can be applied
both to direct and iterative regularization method we refer to any method presented
in Section 2 by using the identifier Regularization method. Note that for every call
of the Regularization method, there must precede a method for the estimation of the
optimal regularization parameter.
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8 T. Huckle, M. Sedlacek

ROI Improving the reconstruction by using the preconditioner Dx̃(s) in a regulariza-
tion method embedded in outer iterations.
Require: H ∈ Rn×n, b ∈ Rn, ε ∈ R, steps ≥ 0, ξ ∈ R

x̃(0)← b or x̃(0)← Regularization method(H,b, I)
for s = 1 to steps do

(Dx̃(s) )ii = |x̃(s−1)
i |+ ε

x̃(s)← Regularization method(H,b,Dx̃(s) )

if ‖r(s)‖2 < νd pn
1
2 ξ then

break
end if

end for

In general, the solution improves in the first steps. As in later steps the error sat-
urates and the reconstruction does not change evidently, it is reasonable to perform
only a few number of iterations. In most cases, it is sufficient to choose steps ∈ [1,5].
Unfortunately, the class of discrete ill-posed problems for which this approach yields
improved reconstructions can not be classified exactly. The prerequisite ”weakly dis-
torting blur operators for signals containing nearly zero components” is making the
method sensible or even spoiling the solution for problems which do not clearly sat-
isfy the requested property. It turned out, that providing a heuristic stopping criterion
for the outer iterations can be a resort for this problem. Following the Discrepancy
Principle [14], we can stop the outer iterative process before reaching the maxi-
mum number of given steps if the residual norm ‖r(s)‖2 drops below the expected
value of the perturbation norm ‖e‖2 = n

1
2 ξ using the ”safety factor” νd p = 1.5 for

νd p‖e‖2 = νd pn
1
2 ξ . Note that for this the error norm or the deviation (order of white

noise) ξ has to be known in advance. Regardless, if the reconstruction should be as
accurate as possible this can be a method of choice for a certain class of problems,
e.g., Gaussian blurred pulse sequences or astronomical images.

4 Estimating the optimal number of iterations in (P)CGLS

Numerical regularization examples where the solution is computed iteratively by a
Krylov subspace method using an appropriate stopping criterion are less frequently
taken into consideration. Therefore, we introduce a discrete L-curve approach based
on B-splines and smoothing and provide a comparison to the ADAPTIVEPRUNING
technique [17,18] and the Discrepancy Principle [8] in Section 5.2.1. Especially the
latter has not been widely considered in numerical examples in literature so far.

Our approach is slightly based upon the Algorithm FINDCORNER from [19] as we
use some sort of spline method combined with a smoothing step. As a first step, we it-
erate to a sufficient large number of iterations within (P)CGLS, for example, n = 200,
and compute the points Pk = (‖r(k)‖2,‖x̃(k)‖2). Following [19], for many problems it
is advantageous to use an intuitive logarithmic scaling of the Pk to emphasize the
flat branches and the corner of the L-curve. However, when using (P)CGLS, we ob-
served that this is no prerequisite to get well shaped L-curves. Here, our experiments
showed that the usage of a linear scaling yields robust behavior of the algorithms.
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Data based regularization for discrete deconvolution problems 9

Using Pk we build up a cubic spline interpolant in B-form. The B-form of our (uni-
variate) piecewise polynomial function f is specified by its knot sequence ‖r(k)‖2 and
by its B-spline coefficient sequence. We use B-splines to receive local support along
the domain to overcome the drawback that local variations in the Pk have influence
on the whole function degrading the shape of the curve. We refer to the approach as
B-SPLINE approach.

Due to numerical errors, local jumps in the curve lead to undesired or useless B-
splines, falsifying the true corner of the curve, as, here, the curvature locally deviates
from the intrinsic one. Therefore, we provide a smoothing of the original data Pk. As
we observed different data ranges along the branches of the L-curve for some model
problems, we perform smoothing of different magnitude along the abscissa and the
ordinate via

τx := c ·10−2
∣∣∣‖r(1)‖2−‖r(n)‖2

∣∣∣ and τy := c ·10−2
∣∣∣‖x̃(1)‖2−‖x̃(n)‖2

∣∣∣ .
The constant c is a heuristic value and can be determined by observing the shape
of the L-curve. Most of our experiments revealed c = 10−2, i.e., almost always we
use 0.01% of smoothing to receive smoother L-curves. If the residual-norm distance
between two neighboring points Pi and Pj is smaller than their solution-norm distance
we use the smoothing criterion∣∣∣‖r(i)‖2−‖r( j)‖2

∣∣∣< τx, otherwise
∣∣∣‖x̃(i)‖2−‖x̃( j)‖2

∣∣∣< τy.

If the criterion is satisfied, we include the point between Pi and Pj into the new
smoothed point set S, instead of Pi and Pj. Note that the smoothing approach could
be performed several times if the shape is still not smooth enough. For some model
problems an additional post-smoothing step is helpful. Therefore, we remove close-
by points from S which either in their residual-norm or solution-norm distance are
closer to each other than 10−8. Based on this new set of smoothed points S, we build
the new B-spline interpolant with its corresponding piecewise polynomial function
fs.

As the optimal number of iterations for (P)CGLS is located at the point with
maximum curvature, we compute the curvature at every sample Sk via

κ(Sk) = f ′′s (‖r(k)‖2)
(

1+ f ′s(‖r(k)‖2)
2
)− 3

2
.

Hence, the corner is located at the point with absolute maximum curvature Sopt =
maxk(|κ(Sk)|). Due to the smoothing approach, it is necessary to perform a back
mapping of Sopt to locate Popt on the original discrete L-curve. For this purpose, we
identify the points Pi and Pj which are closest to Sopt via their residual-norm distance.
The true corner Popt is then the point with bigger absolute curvature when evaluated
on fs.

Following [9], if the perturbation norm ‖e‖2 (or ξ ) is known within reasonable
accuracy in advance, we are interested in using the DISCREPANCYPRINCIPLE as
a stopping heuristic in (P)CGLS and its qualitative comparison to estimators based
on L-curves, like, for example, the ADAPTIVEPRUNING algorithm or our B-SPLINE
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10 T. Huckle, M. Sedlacek

approach (see Section 5.2.1). As in (P)CGLS the series {r(k)} is monotonically de-
creasing, we terminate the reconstruction at iteration k if ‖r(k−1)‖2−‖r(k)‖2 < ξ is
satisfied. This criterion is much cheaper than, for instance, the L-curve criterion as it
can be computed during each iteration. Moreover, there is no need for another invo-
cation with the estimated k or to store every solution along the estimation process, as,
here, after (P)CGLS returns, the solution is immediately available.

5 Numerical results

Besides some few model problems created on our own and from [23], we mainly fo-
cus on problems from Regularization Tools [13] by Hansen. We affect our right-hand
sides with Gaussian white noise of different order, and we perform all computations
on normalized values. Note that ξ ∈ R refers to the order of the white noise. If not
mentioned otherwise, we use ε = 10−8 for Dx̃ and x̃(0) = b as initial solution for the
ROI algorithm.

5.1 Preconditioned direct regularization

For the Tikhonov regularization we use two different ways to estimate the optimal
regularization parameter α . We constitute the method as OPTIMAL by using the MAT-
LAB function fminbnd to search for the local minimizer α for our Tikhonov function
handle. We refine the search by setting the termination tolerance to 10−9 = TolX. Pro-
viding an optimal solution has a more hypothetical character. Computing the minimal
error minα ‖x− x̃α‖2 illustrates the maximum obtainable improvement for a perfect
estimator. Moreover, one could think of a quasi-optimal estimator by visually choos-
ing the subjective best or sharpest image from a set of reconstructions.

Additionally, we compute an estimation via l corner. Similarly to [13], we fix
the size of our parameter space to p= 200 (number of evaluations for αk) and perform
a scaling of the various αk in the form

αk = αk+1

(
σmax

αp

) 1
p−1

, k = p−1, . . . ,1. (5.1)

Here αp = max(σmin,16σmaxεmach) at which εmach denotes the machine precision and
is defined as εmach = 2.2204 ·10−16 in our case. For every αk we compute the (precon-
ditioned) Tikhonov solution x̃αk and generate the points (‖Hx̃αk−b‖2,‖x̃αk‖2)= {Pk}
of the L-curve. The location of the corner is performed afterwards using l corner.

In case of reconstructing the signal via TSVD we estimate the regularization pa-
rameter with the ADAPTIVEPRUNING algorithm implemented in [22]. For the pre-
conditioned TSVD solution we use the SVD of HD, compute the solution x̃k with the
estimated optimal truncation parameter k via tsvd [13], and apply the preconditioner
to the solution by x̃k = Dx̃(s) x̃k. Similar to Tikhonov, we provide an OPTIMAL solution
by computing the minimal error mink ‖x− x̃k‖2 with respect to the true solution.
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Data based regularization for discrete deconvolution problems 11

5.1.1 Example 1: 1D Gaussian blur of a constant pulse sequence

In our first example we consider the signal x1 of size n = 800 which is a pulse rate
with constant positive discontinuities after every 100 samples:

(x1)100·i = 5, i = 1, . . . ,8. (5.2)

We blur this signal with a 1D Gaussian operator blur1D with band = 6, σ = 4,
and add noise of order ξ = 0.05%. Here, blur1D is the 1D analogy of the 2D blur

operator taken from [13] (cf. Section 5.1.2). The 2D right-hand side is reduced to ap-
propriate size. We reconstruct the signal both in its basic way without preconditioner
(denoted as I) and with the diagonal preconditioner Dx̃(s) using ROI where s denotes
the number of performed outer iterations. Note that the results for Dx̃(1) reflect a single
application of the data based preconditioner. We fix the maximum number of outer
iterations to 5, i.e., steps = 5.

Following Table 5.1, we obtain better reconstruction of x1 using Dx̃(s) . Performing
more outer iterations leads to further improvement. In contrast to TSVD the Discrep-
ancy Principle in ROI stops the iteration for Tikhonov (l corner) after the first step.
While this criterion prevents further improvement for this example, it may prevent
degradation of the solution for other problems. The ADAPTIVEPRUNING algorithm
yields nearly optimal estimations of the truncation index making the TSVD regular-
ization produce saturated values similar to the OPTIMAL case. Here, and for some
other model problems, we observe that after applying Dx̃, the solution norms ‖x̃‖2
become much bigger which results in sharper L-curves (cf. Figure 5.1). Therefore,
estimators are able to locate the corner more accurately.

Table 5.1 Reconstruction errors for the signal x1 blurred with blur1D(800,6,4) and affected by noise
of order ξ = 0.05% using Tikhonov regularization and TSVD in algorithm ROI.

blur1D(800,6,4), n = 800, band = 6, σ = 4, ξ = 0.05%, ε = 10−8, steps = 5,
(x1)100·i = 5, i = 1, . . . ,8

Preconditioner
‖x1− x̃1‖2/‖x1‖2 (Regularization parameter)
Tikhonov TSVD

OPTIMAL l corner OPTIMAL ADAP.PRUN.
I 0.2328 (0.0418) 0.8111 (1.1503) 0.2212 (766) 0.5830 (794)

Dx̃(1) 0.0384 (0.0238) 0.2357 (0.0005) 0.0300 (82) 0.0319 (110)
Dx̃(2) 0.0224 (0.0333) – stopped 0.0015 (8) 0.0018 (11)
Dx̃(3) 0.0176 (0.0360) – 0.0013 (8) 0.0013 (8)
Dx̃(4) 0.0153 (0.0397) – 0.0013 (8) 0.0013 (8)
Dx̃(5) 0.0141 (0.0419) – 0.0013 (8) 0.0013 (8)

5.1.2 Example 2: Test problem blur

As a second example we consider the test problem blur taken from [13] which
is deblurring images degraded by atmospheric turbulence blur. The matrix H is an
n2× n2 symmetric, doubly block Toeplitz matrix that models blurring of an n× n
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12 T. Huckle, M. Sedlacek

(a) Without preconditioner. (b) With diagonal preconditioner Dx̃(1) .

Fig. 5.1 Discrete L-curves for the problem blur1D(800,6,4) solved with TSVD without preconditioner
and with Dx̃(1) using the ADAPTIVEPRUNING algorithm to estimate the truncation index.

image by an isotropic Gaussian point-spread function. The parameter σ controls
the width of H and thus the amount of smoothing and ill-posedness. H is symmet-
ric block banded and possibly positive definite depending on n and σ . We choose
H ∈ R322×322

, band = 3, and σ = 2, i.e., we invoke blur(32,3,2). We refer to the
stacked right-hand side as x2 and affect it with ξ = 0.01%. Using ROI, we bound the
outer iterations to steps = 5.

Similar to Example 1, the usage of Dx̃(s) yields better reconstructions both for
Tikhonov and TSVD as illustrated in Table 5.2. The Discrepancy Principle in ROI
takes effect after the first improvement for Tikhonov but it does not stop the recon-
struction after the third step for TSVD producing worse results along further itera-
tions. This reflects the inaccurate behavior of the stopping criterion which we ob-
served for some model problems. Due to poor estimations of α using l corner, we
get nearly similar results for I and Dx̃(1) . When using our B-SPLINE approach, for
example, we obtain more distinct errors which shows the sensitivity of the estimation
process.

Figure 5.2 gives the mesh plots of the OPTIMAL Tikhonov solutions. Comparing
5.2 (b) and 5.2 (c) shows that using data based regularization provides a solution with
better reconstruction, especially near zero values. For theoretical interest, Figure 5.2
(d) gives the solution using Dx̃(1) built from the initial solution x̃(0) = x. Taking the
exact signal values into account in most cases leads to improved reconstructions, even
for more general blur operators and signals.

5.1.3 Example 3: Test problem wing

In our last example for direct regularization methods we consider the test problem
wing by G. M. Wing taken from [13] where the signal is a positive flank. We invoke
wing(800, 1

3,
2
3), affect the blurred right-hand side with white noise of order 0.1%,

and perform a maximum of 5 outer iterations in ROI.
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Data based regularization for discrete deconvolution problems 13

Table 5.2 Reconstruction errors for the blur(32,3,2) problem from [13] affected by noise of order
ξ = 0.01% for Tikhonov regularization and TSVD. The reconstruction is performed with ROI.

blur(32,3,2), n = 322, band = 3, σ = 2, ξ = 0.01%, ε = 10−8, steps = 5

Precond.
‖x2− x̃2‖2/‖x2‖2 (Regularization parameter)
Tikhonov TSVD

OPTIMAL l corner B-SPLINE OPTIMAL ADAP.PRUN.
I 0.1813 0.6967 0.3757 0.1898 (766) 0.8619 (972)

(0.0042) (3 ·10−4) (0.0670)
Dx̃(1) 0.1148 0.6479 0.1345 0.1384 (417) 0.1583 (506)

(5 ·10−4) (3 ·10−6) (0.0012)
Dx̃(2) – stopped – stopped – stopped 0.0997 (310) 0.1243 (363)
Dx̃(3) – – – 0.0971 (287) 0.1247 (304)
Dx̃(4) – – – 0.0997 (273) 0.1309 (274)
Dx̃(5) – – – 0.0998 (273) 0.1789 (232)

(a) Observed signal b = Hx+η . (b) No preconditioning yields error 0.1813.

(c) Using Dx̃(1) , x̃(0) = b yields error 0.1148. (d) Using Dx̃(1) , x̃(0) = x yields error 0.0150.

Fig. 5.2 Impact of using x̃(0) = b and x̃(0) = x as initial solutions in algorithm ROI during OPTIMAL
Tikhonov reconstruction of the problem blur(32,3,2), ξ = 0.01%.
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14 T. Huckle, M. Sedlacek

Following Table 5.3, a single application of Dx̃(1) in the first step yields slightly
worse solutions. For TSVD the stopping criterion tolerates further outer iterations and
thus it becomes possible to improve the reconstruction. Although, here, for Dx̃(1) the
estimated and OPTIMAL reconstruction is worse than for the case using I, the solution
becomes better for Dx̃(3) . However, the Discrepancy Principle does not prevent from
spoiling the solution after 3 iterations. Note that this is an example where the signal
is strongly distorted by H and the signal structure is not preserved.

Table 5.3 Reconstruction errors using Tikhonov regularization and TSVD for the wing(800, 1
3,

2
3) prob-

lem from [13] affected by noise of order ξ = 0.1%. The reconstruction is performed with algorithm ROI.

wing(800, 1
3,

2
3), n = 800, ξ = 0.1%, ε = 10−8, steps = 3

x3 Hx3 +η

Preconditioner
‖x3− x̃3‖2/‖x3‖2 (Regularization parameter)

Tikhonov TSVD
OPTIMAL l corner OPTIMAL ADAP.PRUN.

I 0.6041 (0.0038) 0.6042 (0.0035) 0.6039 (2) 0.6039 (2)
Dx̃(1) 0.6092 (0.0001) 0.6094 (0.0002) 0.6137 (3) 0.6240 (2)
Dx̃(2) – stopped – stopped 0.4122 (2) 0.4561 (2)
Dx̃(3) – – 0.3934 (2) 0.3813 (2)
Dx̃(4) – – 0.7248 (2) 0.6550 (2)
Dx̃(5) – – 1.4154 (2) 1.3208 (2)

5.2 Data based preconditioned iterative regularization

5.2.1 Estimating the number of iterations in (P)CGLS

We compare the performance between our B-SPLINE approach, the ADAPTIVEPRUN-
ING algorithm, and the DISCREPANCYPRINCIPLE. We use a similar test scenario and
the notation as presented in [17,18] but use CGLS without preconditioner to compute
the solution of our test problems. As illustrated in Table 5.4, our test problems are
mainly chosen from [13], except No. 14 and No. 15 which are two ill-conditioned
coefficient matrices from [23]. For the lotkin operator we use the smooth signal
xi = sin

( iπ
n

)
with a discontinuity in the middle x n

2
= 4 and for the prolate operator

the constant pulse sequence (x)100·i = 200. To evaluate the quality of the reconstruc-
tions, we constitute x̃kopt as the OPTIMAL solution where kopt := mink ‖x− x̃k‖2. We
fix our problem size to n = 1024 and for each test problem p we compute regularized
solutions for 10 different noise levels ξ ∈ {7 · 10−d ,4 · 10−d ,1 · 10−d ,7 · 10−6} with
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Data based regularization for discrete deconvolution problems 15

Table 5.4 Test problems used for the comparison of the estimation approaches. All problems from Reg-
ularization Tools use the default solution. For lotkin we use the signal xi = sin

( iπ
n

)
,x n

2
= 4 and for

prolate the constant pulse sequence (x)100·i = 200.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Name b
l
u
r

d
e
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i
v
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Type Regularization Tools [13] [23]

d ∈ {3,4,5}. Similar to [18], we measure the quality of the solutions using the metric

Qp,ξ =
‖x− x̃k‖2∥∥x− x̃kopt

∥∥
2

.

The minimum value Qp,ξ = 1 is optimal, and values Qp,ξ > 102 are considered off
the scale and are set to 102.

Following Figure 5.3, the B-SPLINE approach produces solutions which are some-
times off the scale which we observed, similar to [18], for the l corner approach as
well. This results from the fact that a parametric spline is a function sensitive to its
knot distribution making maximum curvature based methods fit only the local behav-
ior of the L-curve and thus sometimes produce poor estimations. For the problems
No. 8, 9, and 10 this approach seems to work better while for No. 3, 7, and 13 it
produces worse solutions compared to the ADAPTIVEPRUNING algorithm.

The most stable behavior over all problems results from the DISCREPANCYPRIN-
CIPLE. However, we observed that both the B-SPLINE and the ADAPTIVEPRUNING
algorithm may produce better estimation. The bottom plot of Figure 5.3 illustrates a
zoomed in view, where all values Qp,ξ > 10

1
10 are set to 10

1
10 . Besides the problems

No. 9, 10, 14, the results are more accurate using the ADAPTIVEPRUNING algorithm.
Nevertheless, if the perturbation norm or η are known in advance and especially for
model problems where the optimum is reached after a few iterations (. 30 ), the DIS-
CREPANCYPRINCIPLE provides a cheap and robust estimation of k, yielding tolerable
solutions while circumventing the drawbacks of the L-curve criterion.

Similar to [17,18] for large scale problems, we observed in some cases that the
real optimum is not located at the corner of the L-curve, but more outside along
its branches which may bring up the deviation from the optimum for the L-curve
based algorithms. Similar to direct regularization techniques, the estimation of the
number of iterations for CGLS is sensible and depends on the smoothness and the
characteristic shape of the L-curve which is not always guaranteed to be satisfied.
Further difficulties may appear for model problems with slowly decaying singular
values, as, here, the corner of the curve becomes less distinct. Moreover, in many
practical problems the L-curve may totally lose its characteristic shape.
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16 T. Huckle, M. Sedlacek

Fig. 5.3 Measure of the quality metric Qp,ξ for the estimation approaches used to reconstruct all model
problems from Table 5.4 for ten realizations of ξ and fixed problem size n = 1024. A measure of one is
optimal, and all values above 102 are set to 102.
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Data based regularization for discrete deconvolution problems 17

5.2.2 Example 4: Test problem prolate

We blur our pulse sequence x1 (5.2) with the prolate operator from [23] which
has symmetric Toeplitz form and is severely ill-conditioned. Our model problem
has order n = 103 and is positive definite as we choose w = 0.34, i.e., we invoke
gallery(’prolate’, 1000,0.34).

Referring to Table 5.5, we are able to further improve on a computed solution
similar to the examples using direct regularization methods. As we want to show the
gained accuracy in later iterations, we switch off the Discrepancy Principle within
ROI to avoid the break in the outer iterations which occurs after the first step. Using
B-SPLINES leads to inferior estimations of k compared to the DISCREPANCYPRINCI-
PLE but yields better solutions in contrast to the ADAPTIVEPRUNING algorithm. This
is because the shape of the L-curve is getting degraded and the optimum no longer
corresponds to the point with maximum curvature. Here, the DISCREPANCYPRINCI-
PLE is a robust and more accurate estimator.

Table 5.5 Reconstruction errors for x1 (5.2) blurred with the operator gallery(’prolate’,1000,

0.34) from [23] and affected with ξ = 0.1% using (P)CGLS within algorithm ROI without stopping
criterion.

gallery(’prolate’,1000, 0.34), n = 1000, ξ = 0.1%, ε = 10−8, steps = 5,
(x1)100·i = 5, i = 1, . . . ,10

Preconditioner (P)CGLS, ‖x1− x̃1‖2/‖x1‖2 (Regularization parameter)
OPTIMAL ADAPT.PRUN. B-SPLINE DISCR.PRINC.

I 0.5330 (13) 0.5380 (10) 0.5380 (10) 0.5404 (6)
Dx̃(1) 0.1213 (78) 0.1339 (166) 0.1213 (77) 0.1355 (8)
Dx̃(2) 0.0341 (5) 0.0491 (36) 0.0430 (16) 0.0392 (4)
Dx̃(3) 0.0115 (2) 0.0346 (91) 0.0307 (32) 0.0146 (3)
Dx̃(4) 0.0057 (2) 0.0470 (101) 0.0265 (17) 0.0069 (3)
Dx̃(5) 0.0041 (2) 0.0315 (40) 0.0256 (44) 0.0048 (3)

We are interested in the convergence behavior when using Dx̃ as a preconditioner
within (P)CGLS. This is illustrated for Dx̃(1) and Dx̃(5) for the problems blur(32,3,2)
from Section 5.1.2 and gallery(’prolate’,1000,0.34) with x1 in Figure 5.4.
Applying the data based preconditioner to these problems results in flat convergence
curves, especially for the prolate operator where CGLS starts to operate on the
unwanted noise subspace after a few iterations and thus heavily spoils the reconstruc-
tion. This flattened effect is enforced along the outer iterations yielding the desirable
L-shaped convergence behavior for Dx̃(5) as Figure 5.4 (a) shows. As there is no in-
tersection between the convergence plots, the reconstruction is always more accurate
in each iteration. Due to the fact that the point of maximum curvature on the L-curve
does not exactly correspond to the optimal one, the estimation of kopt does not always
correspond to the exact optimum.
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(a) Behavior for Example 2. (b) Behavior for Example 4.

Fig. 5.4 Convergence behavior of CGLS and PCGLS with Dx̃(1) and Dx̃(5) for model problems
blur(32,3,2) (a) and gallery(’prolate’,1000,0.34) (b). The relative error ‖x− x̃‖2/‖x‖2 de-
pends on the iteration k. The black dots are the B-SPLINE estimations for the optimal number of iterations.

5.2.3 Example 5: Image test problems blur, tomo and text image

We are interested in using (P)CGLS as regularization method in the ROI algorithm
for two-dimensional discrete ill-posed problems and in the visual effects occurring in
the solutions. We consider the problems blur (see Section 5.1.2), tomo from [13],
and the image Fig0920(a)(text image) from [7]. tomo is a tomography problem
where the domain [0;n]× [0;n] is divided into n2 cells of unit size, and a total of
round(n2) rays in random directions penetrate the domain. As a third subexample we
use the quadratic cut-out [1;150]× [1;150] of the text image image from [7] and
blur it with the 2D Gaussian operator using band = 4 and σ = 3. We affect the signals
resulting from blur(100,8,4), tomo(60,1), and text image with ξ = 0.08%,
ξ = 0.02%, and ξ = 0.1%, respectively. For blur and text image we switch off the
Discrepancy Principle in ROI to illustrate the effect of 5 outer iterations. For tomo
we limit their maximum number by 8.

Figure 5.5 shows the solutions for the first and the third problem. For the tomo

problem we obtained an error of 0.2027 for CGLS (B-SPLINE) on I and an error of
0.1153 for PCGLS (DISCREPANCYPRINCIPLE) for Dx̃(8) . Using data based precon-
ditioning yields higher reconstruction quality for the given model settings. Visually,
there is less noise perturbation in the background as can be seen, for example, in Fig-
ure 5.5 (c). The shape of the objects is reconstructed more accurately. Compare, for
instance, the white cross in Figure 5.5 (c) or the writing in Figure 5.5 (f). We addition-
ally reconstructed the text image problem with PCGLS (DISCREPANCYPRINCIPLE)
and obtained similar results with Dx̃(5) which yields an error of 0.567. Note that we
were able to find model settings for these problems where data based preconditioning
lead to worse results. Especially for settings affected with large noise an application
of Dx̃ produces poorer reconstructions compared to I. For some of these settings the
usage of outer iterations can be a remedy to circumvent this problem as, here, the
reconstruction is worse for Dx̃(1) but improves along further iterations.
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(a) Observed image
b = Hx + η . blur(100,8,4),
ξ = 0.08%.

(b) CGLS (B-SPLINE) on I
yields error 0.3967.

(c) PCGLS (B-SPLINE) for
Dx̃(5) yields error 0.3478.

(d) Observed image b = Hx +
η , ξ = 0.1%.

(e) CGLS (ADAPT.PRUNING)
for I yields error 0.7193.

(f) PCGLS (ADAPT.PRUNING)
for Dx̃(5) yields error 0.595.

Fig. 5.5 Reconstruction of model problem blur(100,8,4) with ξ = 0.08% in subfigures (a)–(c) and
a cut-out of the image Fig0920(a)(text image) from [7] blurred with the 2D Gaussian operator us-
ing band = 4, σ = 3, and ξ = 0.1% in subfigures (d)–(f). Reconstruction is perfomed with (P)CGLS in
algorithm ROI with switched off Discrepancy Principle.

5.2.4 Data based preconditioning in other iterative regularization methods

We are interested in the behavior using data based preconditioning in other Krylov
subspace methods as proposed in Section 3.1. We focus on the problem blur(32,4,8)

from [13] and on the blur operator gallery(’gcdmat’,1024) from [23], which is
the greatest common divisor matrix, using the point symmetric right-hand side x4
with a positive and negative sawtooth around n

2 :

(x4)i=1: n
2−100, n

2+100:n = 2, (x4)i= n
2−100: n

2−1 = i− n
2
+101, (x4)i= n

2 : n
2+100 = i− n

2
−100.

We perform the reconstruction using a maximum of 5 outer iterations in ROI and use
the optimal number of iterations kopt within all methods.

Following Table 5.6, we receive similar results among the selected Krylov meth-
ods and obtain improved solutions using Dx̃. For the blur problem the Discrepancy
Principle in ROI stops the reconstruction process after the first iteration. The addi-
tional theoretical results for Dx̃(1) with initial solution x̃(0) = x show the maximum
obtainable improvement after one outer iteration if ξ = 0%. For this case we always
observe a strong improvement for the model problems which implies that the less b is
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affected by noise, the bigger the improvement will be when data based regularization
is used.

Table 5.6 Reconstruction errors for various Krylov subspace methods using the optimal number of iter-
ations for the blur(32,4,8) [13] and the gallery(’gcdmat’,1024) [23] problem, respectively. The
reconstruction is performed with algorithm ROI using a maximum of 5 outer iterations.

blur(32,4,8), ξ = 0.015%, ε = 10−8, steps = 5

Preconditioner ‖x− x̃‖2/‖x‖2 (Regularization parameter)
(P)CGLS (P)MINRES (P)MR-II

I 0.2648 (67) 0.2617 (82) 0.2660 (147)
Dx̃(1) , x̃

(0) = b 0.1718 (69) 0.1684 (536) 0.1745 (243)
Dx̃(1) , x̃

(0) = x 0.0206 (18) 0.0205 (148) 0.0199 (36)

gallery(’gcdmat’,1024), ξ = 0.5%, ε = 10−8, steps = 5, x4

Preconditioner ‖x4− x̃4‖2/‖x4‖2 (Regularization parameter)
(P)CGLS (P)MINRES (P)MR-II

I 0.4116 (25) 0.4072 (30) 0.4231 (44)
Dx̃(1) , x̃

(0) = b 0.3033 (25) 0.3001 (95) 0.3021 (56)
Dx̃(3) , x̃

(0) = b 0.2350 (21) 0.2340 (67) 0.2329 (42)
Dx̃(5) , x̃

(0) = b 0.2260 (20) 0.2278 (65) 0.2216 (31)
Dx̃(1) , x̃

(0) = x 0.1182 (11) 0.1169 (33) 0.1138 (24)

5.3 Data based regularization and regularization using smoothing norms

We are interested in a comparison between data based regularization and general
form regularization using a smoothing norm. We reconstruct three signals using the
T(G)SVD and a maximum of 5 outer iterations in algorithm ROI in different settings.
The pulse sequence x5 with discontinuities at

(x5)100 = 3, (x5)200 = 5, (x5)300 =−1, (x5)400 = 2, and (x5)500 =−8

is blurred with blur1D(550,3,2) and affected with ξ = 0.5%. The smooth signals
from model problems i laplace(550,1) and i laplace(550,2) [13] are blurred
with noise ξ = 0.4% and ξ = 0.3%, respectively. We obtain the first derivative ap-
proximation L1 for the smoothing norm ‖L1x‖2 by invoking get l(n,1) from [13]
and reconstruct the signals by using tgsvd. We provide both the OPTIMAL solution
and an estimation of the truncation index via the ADAPTIVEPRUNING algorithm.

Following Table 5.7, reconstructing smooth signals using smoothing norms yields
improved results while for discontinuous signals data based regularization is a good
choice when H is weakly distorting. Note, that for the i laplace(550,1) prob-
lem data based regularization improves the reconstruction for Dx̃(1) and that the Dis-
crepancy Principle does not circumvent spoiling the reconstruction along the outer
iterations in the i laplace problems.
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Table 5.7 Reconstruction errors using T(G)SVD regularization for x1 (5.2) blurred with
blur1D(550,3,2) and the model problem blur(20,2,4) affected with ξ = 0.2% and ξ = 0.3%,
respectively.

Preconditioner ‖x− x̃‖2 /‖x‖2 (Regularization parameter)
T(G)SVD (OPTIMAL) T(G)SVD (ADAPTIVEPRUNING)

blur1D(550,3,2), n = 550, band = 3, σ = 2, ξ = 0.5%, x5
I 0.5875 (445) 2.5943 (548)

L1 0.5951 (408) 0.9967 (2)
Dx̃(1) 0.0813 (29) 0.2311 (16)
Dx̃(5) 0.0094 (6) 0.0129 (5)

i laplace(550,1), n = 550, ξ = 0.4%
I 0.2211 (8) 0.2493 (6)

L1 0.1042 (5) 0.1748 (4)
Dx̃(1) 0.1848 (7) 0.2194 (5)
Dx̃(5) 1.0865 (4) 1.3555 (2)

i laplace(550,2), n = 550, ξ = 0.3%
I 0.7926 (8) 0.8156 (5)

L1 0.0304 (5) 0.2294 (2)
Dx̃(1) 1.3016 (1) 2.9878 (7)
Dx̃(5) 1.4655 (1) 4.0920 (3)

6 Conclusion

We considered the impact of taking the data of the observed right-hand side into
account to improve on the reconstruction when using regularization methods to solve
discrete deconvolution problems. As classical regularization methods we used Tikho-
nov-Phillips regularization and the TSVD while in the class of iterative methods we
focused on (P)CGLS to compute a regular solution.

In case of model problems where H preserves the shape of the original signal, i.e.,
performs a weak blurring, and the right-hand side contains nearly zero components,
the usage of data based regularization will improve the reconstruction, especially
when the perturbation in the right-hand side is of small order and discontinuities
are available. Here, incorporating the signal values in a diagonal matrix D is favor-
able concerning its cheap construction and inversion. Further improvement can be
achieved by iteratively applying D to the solution iterates. As a heuristic stopping rule
we used the Discrepancy Principle which, for some examples, showed pessimistic be-
havior, i.e., the outer iteration stopped although it would have been possible to further
improve on the solution (see Section 5.2.2 and Section 5.2.3).

Besides using OPTIMAL solutions we investigated the results of our data based
regularization approach applying estimated regularization parameters in a variety of
test examples. For the direct regularization methods, we used the spline approach
from [13] and the robust ADAPTIVEPRUNING algorithm [18] to estimate the corner
of discrete L-curves. For (P)CGLS we proposed an approach based on FINDCORNER
[19] which incorporates smoothing and the local support of B-splines. A comparison
between our discrete B-SPLINE based L-curves, the ADAPTIVEPRUNING technique
and the DISCREPANCYPRINCIPLE, as suggested in [9], gives further insight in the
behaviour and quality of the estimation process for this Krylov method. Under the as-
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sumption of knowing the perturbation error a priori, the DISCREPANCYPRINCIPLE
appears to be robust for problems where the optimum is reached after a few num-
ber of iterations (. 30) and is fairly cheap compared to L-curve based algorithms.
Nevertheless, the presented L-curve approaches have their right to exist as they may
yield more accurate estimations of the regularization parameter. Last but not least,
the success of data based regularization depends on the quality of the used estimator.

It would be interesting to combine data based regularization with the stabilizing
approaches of hybrid methods suggested in [4,24]. Furthermore, a more convenient
stopping rule for the outer iterations should be investigated making data based regu-
larization applicable to general problems without downgrading existing solutions.
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