
1

Parallel Numerics
Scope: Revise standard numerical methods considering

parallel computations!

Literature: Dongarra, Duff, Sorensen, van der Vorst:
Numerical Linear Algebra for High-Performance
Computers
Pacheco: A User’s Guide to MPI (web)

Parallel Programming with MPI
Schüle: Paralleles Rechnen

Required knowledge: Numerics
Parallel Programming
Graphs

2

Why parallel computing?

SETI, weather prediction, quantum simulation

TOP500

HLRB-II

3

I. Introduction
1. Computer Science Aspects
2. Numerical Problems
3. Graphs

II. Elementary Linear Algebra Problems
1. BLAS
2. Matrix-Vector Operations
3. Matrix-Matrix-Product

III. Linear Equations with Dense Matrices
1. Gaussian Elimination
2. Vectorization
3. Parallelization
4. QR-Decomposition with Householder matrices

IV. Sparse Matrices
1. General Properties, Storage
2. Sparse Matrices and Graphs
3. Reordering
4. Gaussian Elimination and Graphs

V. Iterative Methods for Sparse Matrices
1. Stationary Methods
2. Nonstationary Methods
3. Preconditioning

VI. Domain decomposition
VII.Eigenvalues, (Quantum Computing, GPU)

4

1. Introduction
1.1 Computer Science Aspects of Parallel Numerics

1.1.1 Parallelization in the CPU

Elementary operations in CPU are carried out in pipelines:
- Divide a task into smaller subtasks
- Each small subtask is executed on a piece of hardware that
operates concurrently with the other stages of the pipeline.

Operand 1
Stage 1 Stage 2 Stage 3 Stage 4 Output Result

Operand 2
Compare add mantissa
exponents

Align exponents accordingly normalize result

Addition Pipeline:

5

Visualisation Pipelining

----- ----- ----- ----- -----
x1

y1

y2

x2

6

Visualisation Pipelining

x1,y1 ----- ----- ----- -----
x2

y2

y3

x3

1

7

Visualisation Pipelining

x2,y2 x1,y1 ----- ----- -----
x3

y3

y4

x4

1 2

8

Visualisation Pipelining

x3,y3 x2,y2 x1,y1 ----- -----
x4

y4

y5

x5

1 2 3

9

Visualisation Pipelining

x4,y4 x3,y3 x2,y2 x1,y1 -----
x5

y5

y6

x6

1 2 3 4

10

Visualisation Pipelining

x5,y5 x4,y4 x3,y3 x2,y2 x1+y1

x6

y6

y7

x7

1 2 3 4

11

Visualisation Pipelining

xi-4,yi-4 xi-3,yi-3 xi-2,yi-2 xi-1,yi-1
xi+yi

xi-5

yi-5

yi-6

xi-6

1 2 3 4

Startup time = k(=4) clock units

Lateron on: per clock unit one result

Total time: k*u + n*u

12

Advantages of Pipelines:

If pipeline is filled: per clock unit one result is achieved.
All additions should be organized such that the pipeline
is always filled!

If the pipeline is nearly empty, e.g. in the beginning of the
computations, it is not efficient!

Major task for CPU: Organize all operations such that the
operands are just in time at the right position to fill the pipeline
and keep it full.

13

CPU - Pipelining

14

CPU

15

General Steps

Instruction Fetch: Get the next command

Decoding: Analyse instruction and compute
addresses of operands

Operand Fetch: Get the values of the next operands

Execution step: Carry out command on operands

Result Write: Write result in memory

Pipelining of these steps, and also inside each step.

16

Special case: Vector instruction
For set of data the same operation has to be executed
on all components.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

nn x

x

y

y
MM
11

α For j = 1,2,..,n: yj = α xj ;

α x5 α x4 α x3 α x2 α x1

α

x6

x7

Total costs: Startup time + vector length * clock time

(pipeline length + vector length) * τ

17

Chaining: Combine pipelines directly

Multiplication Addition α x + y
α x

y

α x + y :

α

x

Advantage:
total cost = startup time + vector length * clock time

18

Problem: Data Dependency !
Example: Fibonacci numbers

x0 = 0, x1 = 1, x2 = x0 + x1, … , xi = xi-2 + xi-1 ;

x0

x1

x1

x2

x2

After filling in x0 and x1 the next pair needs x2 which
is known only after the first computation is finished!

Pipeline contains always only one pair – is nearly
empty all the time!

Similar Problem for recursive subroutine calls.

19

CPU

Register

Level1 Cache

Level 2 Cache

Main Memory

Hard Disc

World (CD, DVD, Stick, Internet, ….)

1.1.2 Memory Organization

fast

Speed

slow

small

Capacity

large

20

General Considerations
DRAM (dynamic): Fast, periodically refreshing is necessary
SRAM (static)

SDRAM (small part SRAM combined with large DRAM)

DDR: (double date rate) use both voltage flanks (side,shoulder)

Necessary time for reading:
- Transport addresses via bus to memory (bus speed)
- Time between arrival of adresses and arrival of data:

latency time (~4 cycles)
- Refreshing of data: 20-40 cycles
- Transport of data from memory: 1 bus cycle

21

Cache Idea
Cache as memory buffer between large, slow memory and
small, fast memory.

By considering the data flow (last used data), try to predict
which data will be requested in the next step:

- keep the last used data in fast cache because it is likely that
the same data will be used again

Main memory Cache Hard disc

- keep also the neighborhood of the last used data in fast cache.

Memory is organized in pages (main memory, hard disc,..).
Hence, together with the last used data put the whole page
in the cache.
Page size ~ bus band width

22

Cache hit:
The data requested from the small, fast memory is found
in the cache: Copy the data to fast memory. Done.

Cache miss:
The data requested from the small, fast memory is not
found in the cache:

Look for data in the large, slow memory.
Copy the related page to the cache
(removing the oldest cache entry) and
copy it to the fast, small memory.

Also: Reuse data as often as possible!
Working blockwise to ensure neighbouring!

23

Mapping between Memory
Direct mapping:

Address 10101110 110
11100001 001 in cache, modulo
11110110 110

Disadvantage: Immediately replacing of data in cache

Associative mapping:

Partition cache in blocks.
Write data to direct mapped address in one of the blocks.
Replace oldest data in block.

24

Memory is often organized in banks connected by bus:

bank1 bank2 bankn. . . .

bus

Per cycle n operands can be fetched out of the n banks.
Storing vectors!

x1 in bank1 x2 in bank2,…. allows one step access to x

Cyclic data distribution

25

1.1.3 Parallel Processors
Classical von Neumann model:
Code and data in memory!
Control unit fetches instructions and
data from memory and sequentially
coordinates the operations.

26

Flynn’s taxonomy:

MIMD architecture: multiple instructions – multiple data

(compare to SISD = “single instructions – single data” , etc.)

Parallel Computation

27

bus

memory I/O

cache cache

CPU CPU processors

Shared Memory (SMP):

28

Cache Coherence
start = proc_number;
for (S=0; s<S_max; S++)

parallel for(i=start; i<N; i+=S+proc_number)
x[i]=2.;

For S=0 and 2 threads:
Thread 1 changes x(0,2,4,…) and thread 2 changes x(1,3,5,…).

Does the cache contain 4 words (cache line = 4), then each changing step of
thread 1 also changes data that is also contained in the cache of thread 2 (and
vice versa). Otherwise the data in the two caches is not consistent anymore!

To retain the right values in both caches after each changing step also the
Value in the other cache has to be renewed!

Leads to a dramatical increase of computational time,
ev. slower than sequential computation!

bus

memory I/O

cache cache

CPU CPU

29

P1

M1

Pn

Mn

processors
.
memory

Virtual shared memory:
Distributed data but organized as shared memory.

Locally distributed memory:

network

memory

cache

CPU

knot

memory

cache

CPU

knot

30

Nonuniform Memory Access

Cluster of multiple CPU processors

Symmetric multiprocessor

Different types of communication!
Shared memory and distributed memory!

bus

memory 1 memory 2

cache

CPU 1

controler controler

cache

CPU 2

cache

CPU 3

cache

CPU 4

31

Topology of the processor/memory interconnection

Bus:

P1

Pn

cache local m. I/O

global memory

bus

Mesh (Array, Grid): p processors, longest path sqrt(p)

P M P M P M

P M

P M P M

P M

.

.
.

.
. . . .
. . . .

.

32

Time for sending data from one processor to another
depends on the connection network topology:
Mesh: 2*sqrt(p)
vector or ring: p-1 or p/2
tree: 2 log(p)
hypercube: log(p) Tree:

Hypercube:
0d 1d 2d 3d 4d

33

Communication - Topology
diameter = largest distance = p-1:

diameter = largest distance = p/2:

diameter =

largest distance =

2 sqrt(p)

34

Diameter = largest distance = 2 ln(p)

Diameter:

1 2 3 4

35

Tree in Hypercube

01 1
011

10
101

36

Different Topologies:

G p Diam(G) Degree(G) Edges(G)

G1(n) n n-1 2 n-1

T1(n) n floor(n/2) 2 n

G2(n,n) n2 2n-2 4 2n2 -2n

T2(n,n) n2 2*floor(n/2) 4 2n2

BT(h) 2h+1 - 1 2h 3 2h+1 -2

HC(k) 2k k k 2k-1 k

G: Grid, T: Torus, BT: binary Tree, HC: Hypercube

37

Network based on Switches

P7

P6

P5

P4

P3

P2

P1

P0

P7

P6

P5

P4

P3

P2

P1

P0

3-level Omega network

P7

P6

P5

P4

P3

P2

P1

P0

Crossbar

38

Communication

Crossbar: Direct, independent connection between all
processors. Nonblocking!

Omega network: Blocking network.
Simultaneous connection P0 – P6 and
P1 – P7 is not possible!
Turn-over of switches necessary!

39

Amdahls’s Law:

Setting:
An algorithm takes N flop’s.

A fraction f is carried out with speed of V Mflops (good in parallel)
A fraction 1-f is carried out with S Mflops (bad)

1.1.4 Performance Analysis
Definition: Computational Speed r = N / t Mflops,

N floating point operations in t microseconds

or by known speed r:
time for N flops is given by t = N / r

f : high speed parallel 1 – f : low speed, strongly sequential

40

Total CPU time:

Overall speed (performance):

(Amdahl’s Law)

)1()1(
S

f
V
fN

S
Nf

V
Nft −

+⋅=
⋅−

+
⋅

=

S
f

V
ft

Nr
−

+
== 1

1

f must be close to 1 in order to benefit significantly
from parallelism

41

Discussion

S
f

S
f

V
ft

Nr ⋅
−

≤
−

+
==

1
1

1
1 with S the slow speed

To achieve large speed,
1-f has to be small!

For very large “parallel” speed V:
f

S

S
f

S
f

V
ft

Nr
−

=
−

+
≈

−
+

==
110

1
1
1

The total speed is governed by the fraction of the
“strongly sequential” part of the algorithm that
cannot be parallelized.

42

Speedup
Executing a job using p processors in parallel
we can achieve a speedup.

Define tp := wall clock time to execute the job
on p parallel processors

Speedup: Sp := t1 / tp is the ratio of execution time
with 1 versus p processors

In the ideal case it would hold t1 = p tp .

Efficiency using p processors: Ep = Sp / p . 0<= Ep <= 1

Ep ≈ 1: very good parallelizable, because then Sp ≈ p or
t1 ≈ p tp .
Problem scales.

Ep ≈ 0: bad, because Ep = Sp /p = t1 / (p tp) and t1 << p tp .

43

Using the same definition of speed and fraction f as above:

ideally parallel

strongly sequential

Ware’s Law

111
1)1()1()1(tf

p
pffttf

p
tft p −≥

−+
⋅=−+

⋅
=

pfpffp
S

E p
p)1(

1
)1(

1
−

≤
−+

==

fpff
p

p
pfft

tS
p

p −
≤

−+
=

−+
==

1
1

)1()1(
11

0: →

Ware’s Law

∞→ pEp

We always will have a small portion of our algorithm that is
not parallelizable and therefore the efficiency will always
be zero in the limit!

44

1/(1-f):

f: 0.1 0.2 0.5 0.9
S: 10/9 10/8 2 10

Reachable Speedup
for large p.

Speedup depending
on p.
Saturation 1/(1-f).

45

Gustafson’s Law
Other model:
We assume that the problem can be solved in 1 unit of time on a
parallel machine with p processors.

Fraction f is good parallelizable, 1-f not

Compared with this parallel implementation an uniprocessor
would perform

(1-f) + f p
for the same job.

ff
p

f
p

S
E

fppfpf
t
tS

p
pf

pf

p
pf

∞→

→+
−

==

−−+=
+−

==

1

)1)(1(
1

11Speedup:

Efficiency:

46

Example
f = 0.99, p = 100 or 1000:

p=100: S100 = 100/1.99 ~ 50, E100 = 0.5,

p=1000: S1000 = 1000/10.99 ~ 100, E1000 = 0.1,

p=100: S100f = 99.01, Ef = 0.9901

p=1000: S1000f = 990.01, Ef = 0.99001

S= p/(f+(1-f)p)) E=1/(f+(1-f)p)Amdahl/Ware:

S=1-f+fp E=(1-f)/p+fGustafson:

	Parallel Numerics
	1. Introduction
	Visualisation Pipelining
	Visualisation Pipelining
	Visualisation Pipelining
	Visualisation Pipelining
	Visualisation Pipelining
	Visualisation Pipelining
	Visualisation Pipelining
	CPU - Pipelining
	CPU
	General Steps
	1.1.2 Memory Organization
	General Considerations
	Cache Idea
	Mapping between Memory
	1.1.3 Parallel Processors
	Cache Coherence
	Nonuniform Memory Access
	Communication - Topology
	Tree in Hypercube
	Different Topologies:
	Network based on Switches
	Communication
	1.1.4 Performance Analysis
	Discussion
	Speedup
	Ware’s Law
	Gustafson’s Law
	Example
	1.1.5 Message Passing for Distributed Memory: MPI
	Important MPI Commands
	Important MPI Variables
	Blocking vs. Nonblocking
	Collective Communication:
	1.1.6 Shared Memory Communication
	Threads
	Example
	Example: Summation
	Tiling in OpenMP
	OpenMP Compilers
	1.1.7 Further Keywords
	For Synchronization

