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Abstract. For symmetric (hermitian) (dense or banded) matrices the
computation of eigenvalues and eigenvectors Az = ABx is an impor-
tant task, e.g. in electronic structure calculations. If a larger number
of eigenvectors are needed, often direct solvers are applied. On parallel
architectures the ELPA implementation has proven to be very efficient,
also compared to other parallel solvers like EigenExa or MAGMA. The
main improvement that allows better parallel efficiency in ELPA is the
two-step transformation of dense to band to tridiagonal form. This was
the achievement of the ELPA project. The continuation of this project
has been targeting at additional improvements like allowing monitor-
ing and autotuning of the ELPA code, optimizing the code for differ-
ent architectures, developing curtailed algorithms for banded A and B,
and applying the improved code to solve typical examples in electronic
structure calculations. In this paper we will present the outcome of this
project.
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1. Introduction

The ELPA-AEO project is a continuation of the ELPA project [1,2] where
mathematicians, computer scientists, and users collaborate in order to develop
parallel software for the Generalized Symmetric Eigenvalue Problem (GSEP)
AX = BXA. The project partners are the Max-Planck Computing and Data facil-
ity in Garching, the University of Wuppertal, the Departments of Computer Sci-
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ence and of Chemistry of the Technical University of Munich, and the Fritz Haber
Institute in Berlin. The former ELPA project developed a basic parallel GSEP
solver and provided the software library https://elpa.mpcdf.mpg.de/about.
Objective of the follow-up ELPA-AEQO project is to include useful tools like mon-
itoring and automatic performance tuning, to optimize the software for certain
architectures, and to develop a special solver for banded GSEP.

The ELPA GSEP solver works in the following way:

e compute the Cholesky factorization B = UYU and the related standard
eigenvalue problem (SEP) AX = XA with A=U-"HAU Y,

e reduce the SEP in A directly (ELPA1) or with an intermediate banded
matrix (ELPA2) to tridiagonal form;

e apply a divide-and-conquer solver to the tridiagonal SEP;

e transform the derived eigenvectors back to the original GSEP according to
the previous steps.

In electronic structure computations a whole sequence of eigenproblems has to be
solved with changing A.

In the following sections we will present the performance improvements in-
cluded in ELPA-AEQO, namely

e monitoring, autotuning, and optimization;

e improved matrix multiplication in the transformations via Cannon’s algo-
rithm;

e taking advantage of banded structure in A and B via Crawford’s method;

e solving huge important GSEPs in electronic structure computations.

2. Optimization, Monitoring, and Autotuning

Clearly the most obvious change in the recent ELPA releases from the user per-
spective is the complete redesign of the library API. The new API requires the
user to first create the ELPA object, then allows various manipulations with it in
order to influence the library performance and finally to call one of the solution
routines. Examples (shortened) of a program using ELPA in Fortran and C can
be seen in Figures 1 and 2, respectively. The new API brought many benefits for
the library users, whilst keeping the user-code changes on very reasonable level.
Not only are the calling commands more elegant, but many new options and func-
tionalities have been implemented. One of the most important is the introduction
of autotuning. An example code, showing a possible use of this functionality is
shown in Figure 3.

The autotuning works as follows. First of all, a set of parameters that should
be tuned is selected (either by choosing the level of autotuning or manually). Each
of the parameters can attain a limited number of values (e.g. all the different
kernel implementations, or different values of certain block sizes, etc.). To alleviate
the user from the need to wait too long and to avoid the necessity of wasting the
valuable computer time, the autotuning can be performed during the production
run with repeating calls (e.g. during the SCF cycle) to the solution routine, each
time with one of the possible parameter combinations with the possibility to



|/ use elpa

2| class (elpa-t), pointer :: e

3l integer :: success

lle => elpa_allocate (success)

5] if (success \= ELPAOK) ... !handle error

6! set the matrix size

7| call e%set(”na”, na, success)

8l if (success \= ELPAOK) ... !checks further omitted
9! set in the same way all the required parameters
10| ! describing the matrix and its MPI distribution.
1] call e%set (”nev”, nev, success)
12/ call e%set(”local_nrows”, na.rows, success)

I3 call e%set(”local_ncols”, na_cols, success)

4] call e%set (”nblk”, nblk, success)

5] call e%set (" mpi_comm_parent” , mpi_-comm._world, success)
16 call e%set (" process_.row” , my_prow, success)

7| call e%set (” process_col”, my_pcol, success)

8] success = e%setup ()
19/ ! if desired, set other run—time options
20] call e%set (”solver”, elpa_solver_2stage , success)
21| ! values of parameters can be retrieved
22 call e%get (”stripewidth_real”, stripewidth , success)
23| ! call one of the solution methods
24| ! the data types of a, ev, and z determine whether
25| ! it is single/double precision and real/complex
26 call e%eigenvectors(a, ev, z, success)
27/' or, in the case of generalized EVP
28 call e%generalized_eigenvectors(a, b, ev, z,

is_already_decomposed , success)

29| ! cleanup
30/ call elpa_deallocate (e)
31 call elpa_uninit ()

Figure 1. Example use of the ELPA object. In the old API, all parameters were passed in one
function call, which, with increasing number of customization parameters and options, became
too inflexible and error prone since the signature of the function became too long and each newly
introduced parameter would change the library API. With the new API, arbitrary large number
of parameters can be added in the future. A new API for generalized EVP has been added,
allowing the user to specify, whether he or she has already called the function with the same
matrix B (using the is_already_decomposed parameter) and wants to re-use its factorizations,
which is useful during the SCF cycle.

interrupt and resume the process and finally to store the optimal setting for future
use, as it is suggested in Figure 3.

Apart from the previously mentioned changes, a lot of effort has been put into
classical HPC optimizations of the code with respect to different architectures.
This includes optimizations for the new CPU architectures, GPUs and intercon-
nects. One of the recent HPC architectures, where ELPA has been successfully de-
ployed is the supercomputer cobra at MPCDF, which comprises of skylake-based
compute nodes, partially equipped with NVIDIA Volta V100 GPUs and the Om-
niPath interconnect. The performed optimizations included writing hand-tuned
AVX-512 kernels (using compiler intrinsics), addressing MPI performance issues
(finally solved by using Intel MPI 2019.3 or higher) and various GPU-related
optimizations.



#include <elpa/elpa.h>
elpa_-t handle;
handle = elpa_allocate(&error);

i

elpa_set (handle, ”"na”, na, &error);

elpa_get (handle, ”solver”, &value, &error);
printf(”Solver is set to %d \n”, value);
elpa_eigenvectors (handle, a, ev, z, &error);
elpa_deallocate (handle);

elpa_uninit () ;

Figure 2. Example use of the C interface. The object-oriented approach is implemented using the
handle pointer. Apart from this, the library use is very similar as through the Fortran interface
(as presented in Figure 1), and the C example is thus kept very short for brevity.

As ELPA originated as a replacement for the ScaLAPACK routines P’SYEVR
and P?SYEVD, it is natural to compare its performance with the best available
implementation of this widely used and de-facto standard library for a given ar-
chitecture, as it has been done in the past ([1], [3]) on Intel-based machines and
also recently by independent authors in [4] using the Cray system. Such compar-
ison can be seen in Figure 4, comparing the performance of the ELPA library
with Intel MKL 2019.5 for a matrix of the size 20000. Scaling curves for larger
matrices including a cross-island run can be seen in Figure 5. It is obvious, that
the performance of the ELPA library, especially its implementation of the two-
stage algorithm, exceeds the performance of the MKL routines significantly, as it
is consistent with other reports.

A lot of effort has been put into GPU related optimizations of ELPA; since the
number of GPU-equipped HPC systems is on the rise. We have already reported
this effort and the obtained results in the previous papers [5] and [3], so let us
here only present a typical performance output (see Table 1) and reiterate some
conclusions:

e ELPA 1-stage can run significantly faster using GPUs, which is not the case
for ELPA 2-stage, where the speed-up is moderate to none at the moment.

e In order to benefit from the GPUs, there has to be enough data to saturate
them. It is thus beneficial to use them for setups, where there are large
local matrices (possibly up to the memory limits), thus for large matrices
and/or moderate number of GPU equipped nodes.

e To fully utilize both the CPUs and GPUs, ELPA is run as a purely MPI
application with one MPI rank per core and the efficient use of the GPU
cards is achieved through the NVIDIA MPS daemon.

We can thus conclude (see Table 1), that the GPU implementation of ELPA 1-
stage is utilizing the GPUs well and given a suitable problem setup, it can be
very efficiently used to reduce the total application runtime.

3. Reduction of Full Generalized Eigenvalue Problems

The solution of a GSEP AX = BXA with A hermitian and B hermitian positive
definite typically proceeds in four steps.



use elpa

class (elpa-t), pointer :: e

class (elpa_autotune_t), pointer :: tune_state

e => elpa_allocate ()

! set all the required fields , omitting others

call e%set(”na”, na, error)

! alternatively exclude some parameters from autotuning by ..
setting them

8l call e%set (”gpu”, 0)

9| !'set up the ELPA object and create the autotuning object

10| success = e%setup ()

11| tune_state => e%autotune_setup (level , domain, error)

O TR W

13/ if (done_with_autotuning) then

14 call e%load_all_parameters(”autotuned_pars.txt”)
I5) elseif (autotuning_in_progress) then

16 call e%autotune_load_state(tune_state, ”atch.txt”)
17| endif

18 iter=0

19| ! application—specific cycle, where multiple similar

20|/ ! EVP problems are solved, e.g. the SCF cycle

21/ do while (continue_calculation)

22 if (.not. done_with_autotuning) &

23 finished = .not. e%autotune_step(tune_state)

24 if (finished) then

25 ! set and print the autotuned—settings

26 call e%autotune_set_best(tune_state)

27 ! the current values of the parameters can be saved
28 call e%save_all_parameters(”autotuned_pars.txt”)
29 done_with_autotuning = .true.

30 endif

31 ! do the actual calculation

32 call e%eigenvectors(a, ev, z, error)

33 ! do whatever needed with the result

34| end do

35/ if (.not. done_with_autotuning) then

36 ! the status of the autotuning can be saved

37 call e%autotune_save_state (tune_state, "atch.txt”)
38| endif

39! de—allocate autotune object

40 call elpa_autotune_deallocate (tune_state)

Figure 3. A sketch of a code, which performs autotuning during a production run of a program
which calls the ELPA library repeatedly. It also shows how to split the autotuning process into
multiple calls of the program by saving the autotuning state into a checkpoint file atch.txt. Each
actual library call is performed with slightly different settings. After all combinations have been
exhausted, the optimal settings are saved to the autotuned_pars.txt file, the autotuning is not
performed any more and the optimal setting is used ever since.

i) Compute Cholesky decomposition B = U7U.
ii) Reduce the GSEP to an equivalent SEP AX = XA, where A =
U HAUL.
iii) Solve the SEP.
iv) Back-transform the eigenvectors via X = U-lX.

Since one key application of ELPA is electronic structure theory, where often a
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Figure 4. Scaling results from the most recent skylake-based supercomputer at MPCDF using
real double precision matrix of the size 20000. Compared is the performance of the two relevant
MKL 2019.5 routines and ELPA one and two stage. Where possible, also results for 10% and
50% of eigenvectors are shown. The MKL routines offer comparable or superior performance to
the ELPA one-stage algorithm for small and moderate number of cores, but do not scale for
larger core counts. ELPA scaling is generally much better in the investigated region. For the
very large core counts and thus very small local matrices, the speed-up with growing number
of cores is slowing down, but the performance is not deteriorating, which can be very beneficial
when coupled with a well scaling application. The ELPA two-stage solver clearly outperforms
all the other routines in this setup.

sequence of GSEPs A® X*®) — BX®AK) with the same matriz B have to be
solved during a self consistent field (SCF) cycle, ELPA’s approach for the above
step ii) is to explicitly compute B~! and then to do (triangular) matrix multi-
plications to obtain A. Alternative approaches use the inverse only implicitly; cf.
the routines PDSYNGST and TwoSidedTrsm in the ScaLAPACK [6] and ELEMEN-
TAL [7] libraries, resp.

With the inverse U ! available explicitly (again upper triangular, denoted as

U in the Afollovging), a computationally efficient way to implement the above step
ii), A= U2 AU, is as follows [8].

ii.a) Compute the upper triangle M, of M := AU. X R
ii.b) Transpose M, to obtain the lower triangle M; of M = U A" = UH A.
ii.c) Compute the lower triangle of A = M;U.

)

ii.d) If the whole matrix A is needed then reflect its lower triangle along the
diagonal.

During the ELPA-AEO project, new algorithms have been developed for the mul-
tiplications in steps ii.a) (Multiplication 1: compute upper triangle of “hermi-
tian X upper triangular”) and ii.c) (Multiplication 2: compute lower triangle of
“lower triangular x upper triangular”). Compared to these multiplications, the
transpositions in steps ii.b) and d) are inexpensive [9].
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Figure 5. Strong scaling graphs for ELPA 2-stage computing all eigenvectors with different
matrix sizes n. The line for n=20k corresponds to the line of the same color from Figure 4. The
results shown in both figures were obtained on the supercomputer cobra at MPCDF, comprising
of compute nodes containing two Intel Xeon Gold 6148 processors (Skylake with 20 cores (each)
at 2.4 GHz) connected through a 100 Gb/s OmniPath interconnect. Most of the calculations
shown were performed within a single island with a non-blocking, full fat tree network topology.
The blocking factor among islands is 1:8. The only cross-island run is for the largest matrix
n=>524k and 40960 cores showing reasonable performance despite the weaker network between
the islands.

Table 1. ELPA runtimes (s) on a full Skylake node (40 cores in total) equipped with two NVIDIA
Volta V100 GPUs. As it is usually the case, ELPA is running as purely MPI application (thus
using 40 MPI ranks). In the GPU case, each of the MPI ranks is offloading compute intensive
kernels to one of the GPUs (through the NVIDIA MPS for efficiency). As it can be seen from the
results, even using one particular architecture, it is not possible to determine the generally best
option. In this particular case, ELPA 1-stage CPU is the best option for very small matrices,
ELPA 2-stage CPU for larger and ELPA 1-stage GPU for the largest. The ELPA 2-stage GPU
is not listed, since its performance is almost never the best possible and is thus currently not
recommended.

CPU GPU
matrix size | ELPA 1 | ELPA 2 | ELPA 1
1024 0.11 0.13 0.93
8192 10.7 5.57 8.45
20000 110 52.7 37.0
65536 5795 2551 733

Our algorithms are based on Cannon’s method [10]; they exploit the trian-
gular structure to save on arithmetic operations and communication, and they
have been extended to work on non-square p,. X p. grids with integer aspect ratio
Ppe - pr. In this case, they take p, phases, which improves over the p. phases of
the approach described in [11] for full matrices.

Here we only point out the main ideas for Multiplication 1. Assume that
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Figure 6. Distribution of the matrices for Multiplication 1 after the initial skewing and the
sharing of A blocks. The numbers next to the arrows indicate the distance of the skewing shifts
within rows/columns of the process grid. See the main text for a description.

A € C™" and U € C™™ have been partitioned into N x N blocks A;; (Ui,
resp.) of size ny X np, where N = [n/np], and that they are distributed over the
process grid in a block torus wrapped manner, i.e., process Py, ; holds exactly those
blocks A; ; and UU such that ¢ = £ mod p, and j = ¢ mod p.. This is also
the default distribution in ScaLAPACK and ELPA. Considering the case N = 6,
pr = 3, p. = 6 as an example (cf. also Figure 6), process P; s would hold the
blocks A1 5, Ass, Uy s, and Uy 5. Next we do a Cannon-type initial skewing: In
row k of the process grid, £k = 0,...,p,. — 1, the local portions of A are shifted
by k positions to the left, and in column ¢, £ = 0,...,p. — 1, the local portions
of U are shifted by ¢ mod p, positions upwards (with cyclic connections along
rows and columns). Therefore, P; 5 now has P; 511 = P; ¢’s original blocks from
A (ie., A1 and Ayp) and Pi4o5 = Py 5's original blocks from U (i.e., (7075 and
03,5). Finally, groups of p./p, processes that are p, positions apart in the same
row, share their portion of A. In our example, P; 5 shares the A blocks with P o,
such that both hold the same blocks A1 o, A4, A1,3, As 3 from A, but different
blocks from U, cf. Figure 6. Note that the blocks (A]M in the strict lower triangle
of U are zero and therefore need not be stored and sent; they bear a light color
in Figure 6.

After these preparations, the computation proceeds in p, phases. In each
phase, every process multiplies its current local A with the current local U. In our
example, taking into account the structure of U and the fact that we compute
only the lower triangle of the product M = AU, in the first phase Py 5 would

update {%}12} = [%12] + [il;:z illg] . [gzz] , whereas the update in P 3 reads

Mg = M3 + A1 ~Ul 3, and P; 1 performs no computation at all in this
My 3 My 3 Agn ' ’
phase. At the end of each phase, the local A blocks are shifted by one position
to the left in the process grid, and the U blocks are shifted by one position up.

It is not hard to verify that, after p, such phases, P 5 has computed “its” blocks
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Figure 7. Timings on HYDRA for the complete transformation A — A with the ScaLAPACK
routine PDSYNGST (one step, inverse of the Cholesky factor used only implicitly) and with the
“invert and multiply” approach (multiplication routines from ELPA or the new Cannon-based
implementations). n = 30,000, n, = 64, 16 single-threaded processes per node.

M 5 and My of the block torus wrapped-distributed product M, and similarly
for the other Py ;.

For a description of Multiplication 2 and a discussion of possible savings from
combining the two multiplications in one function and buffering some data the
reader is referred to [12].

In Figure 7 we present timings obtained on the HYDRA system at the Max
Planck Computing and Data Facility in Garching. Each HYDRA node contains
two 10-core Intel Ivy Bridge processors running at 2.8 GHz. All matrices were
double precision real of size n = 30,000, and the block size was n;, = 64. We
observe that explicit inversion, combined with our Cannon-based matrix multipli-
cations, can be highly competitive even for solving a single generalized eigenprob-
lem (red curve, including the time for inverting U). For sequences of GSEPs with
the same B, where the inversion can be skipped in most cases, the new reduction
according to steps ii.a) to d) is significantly faster (green curve).

In [12] we have considered only MPI parallelization, using p processes for
utilizing a total of p cores. Alternatively, one can reduce the number of processes
and enable multithreaded execution. This may or may not be beneficial, depend-
ing on several factors. In particular, while multithreading reduces the size of the
process grid and therefore leads to savings in communication, it also can cause
a loss of computational performance if running a process’ computations with ¢
threads does not speed them up by a factor of .

In the left picture of Figure 8 we see that using multiple threads per process
may extend the range of scalability. More details are exposed in the right picture,
which shows the relative timings for the same runs. We see that for numbers of
cores p that are not squares and therefore would lead to a non-square grid when
using single-threaded processes, using 2 threads per process (leading to a square
process grid) reduced the time for multiplication 1 by roughly 10%, whereas it
increased the time for those p that are square and not very large. This indicates
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Figure 8. (Left) Time of Multiplication 1 on HYDRA for n = 30,000, n, = 64, if 16 cores per
node are used for 16 single-threaded processes per node (“16 x 1”), 8 processes with 2 threads
each (“8 x 2”), and 16 processes with 2 threads each (hyperthreading, “16 x 2”). (Right) Times
relative to the baseline of 16 single-threaded processes per node.

a slight preference of that routine for square process grids. If the number of cores
is large enough that communication contributes significantly to overall time then
multithreading pays independently of the grid’s shape because it leads to a smaller
process grid and therefore reduces communication.

The effect of multithreading also differs between the routines in the ELPA
library; see Table 2. Some of them contain explicit OpenMP directives or pragmas
for controlling thread parallelism. Others rely exclusively on multithreaded BLAS,
and the efficiency of the latter depends on the size and shape of the involved
matrices, which may be rather different; this is the case, e.g., with the GEMM calls
in Multiplication 1 vs. Multiplication 2 [12].

A detailed discussion of these issues is not within the scope of this work,
but note that even the decision whether to use multithreading for the complete
solution of an eigenproblem (considering all routines involved) may depend on
whether it is part of a whole sequence of eigenproblems, as common in SCF cycles,
or just a single eigenproblem; cf. the last two lines in Table 2. See Section 2 on
support in ELPA for taking such decisions in a partially or fully automated way.

Table 2. Timings (in seconds) on HYDRA for n = 30,000, n, = 64, with different setups of 4096
cores (256 nodes with 16 cores each): 16 single-threaded processes per node, 8 processes with 2
threads, and 4 processes with 4 threads.

16 x 1| 8 x2| 4 x4

Cholesky decomposition 1.804| 1.078| 0.878
Invert 0.885| 0.804| 0.781
New transformation 0.759| 0.709| 0.705
Solution of standard eigenproblem| 8.189| 8.668| 8.758
Back-transformation 33% 0.247| 0.235| 0.203

Overall without Chol. & Invert 9.195| 9.612| 9.665
Overall including Chol. & Invert |[11.883]11.494(|11.324




4. Eigenvalue Solver for Banded Matrices

If, additionally, the two matrices A, B = UFU in the GSEP AX = BXA are
banded, the procedure described in Section 3 is not optimal as it leads to a full
matrix A (the Cholesky factor of B is still banded, but the inverse of the Cholesky
factor is in general a full matrix and hence A becomes a full matrix).
The two-stage solver in ELPA however, first transfers a full matrix C' of a SEP
CY = YA to a banded matrix C' and then further transforms it to a tridiagonal
matrix C' which is solved for the eigenvalues and eigenvectors. Subsequently, the
eigenvectors undergo two backtransformation steps to obtain the eigenvectors of
the SEP. In this framework, by maintaining the band while transforming the
GSEP to a SEP, the first step (transformation of the full matrix to the banded
matrix) can be omitted as well as the second step of the backtransformation.

Crawford proposed an algorithm for maintaining the band in [13]. His algo-
rithm stepwise applies the Cholesky factorization of B and removes the occurring
fill-in outside the band by a series of QR factorizations. Lang extended the algo-
rithm in [14]. His version offers more flexibility for blocksizes and bandwidth and
utilizes a twisted factorization for B instead of a standard Cholesky factorization.
The latter allows to reduce computational work when removing the occurring fill-
in drastically. In the following we will briefly describe our parallel implementation
of Lang’s algorithm including the backtransformation of the eigenvectors. A more
detailed description can be found in [15].

For the parallel implementation we use a unified blocksize n, = max(ba,bg)
(as in the original Crawford algorithm) to get an efficient pipelining algorithm.
The matrices A and B can therefore be subdivided into N x N blocks with
N = [;=]. The case when n is not a multiple of n, can be covered by adding an
incomplete block at the end.

The matrix U originates from the twisted factorization of B with twist posi-
tion p and twist block P (the twist position p is chosen such that it is the end of
a block; this block is referred to as twist block). U can itself be factorized as

U=Up -Up_1--Uy -Upy1---Uyn_1-Un.

Each of the factors U; has the shape of an identity matrix besides one block row
between the rows (i — 1)ny + 1 and iny,. These rows contain the same values as
in the matrix U at the same place. Figure 9 gives an illustration of the matrix
shapes and the block structure.

The transformation A = U~# AU~ can therefore be reformulated to the stepwise
application

A:U};H.U;fl...Ul—H.U;fl...U]\—[ffl.U]GH.

A.U]\*fl.U&il...UI;Jlrl.Ufl...UI;il.U};l.

As it can be seen from Figure 9 every U; consists of one block row that differs
from the identity matrix. In this block row, we will denote the diagonal block as
U;,; and the other non-zero block as U; ;—1 or U; ;+1, depending on the position
in the lower or upper matrix half. When inspecting the inverse of the matrix,
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Figure 9. Block structure of the matrices A and B (left), the twisted factorization of B, U with
its twist block P (middle), and one of its factors, Uy (right).

U ', it can be seen that it has the same structure as U;. The diagonal block of
the inverse matrix turns out to be the inverse of the diagonal block of U;. In the
further text we use D; := U;il as abbreviation for this block. The other block of
the inverse matrix is denoted as F; and can be described by F; := —D;U; ;1 in
the lower matrix half or F; := —D;U; ;11 in the upper matrix half, respectively.

Applying one factorization step U; in the lower matrix half hence takes the
i-th block column of A, multiplies it from the right with E; and adds it to block
column 7 — 1 (upper matrix half: block column ¢ + 1). Afterwards, block column
1 is multiplied from the right with D;. The same procedure is rolled out for the
multiplication from the left with U, ?. Block row i times EX is added to block
row ¢ — 1 (upper matrix half: block row i + 1) and subsequently block row i is
multiplied by DH.

Figure 10 shows in the left picture the application of a factorization step in
the lower matrix half and the occurring fill-in (left two block columns). The fill-in
is created in the blocks A; ;_1, Aiy1,—1 and A;4; ;. Due to symmetry we restrict
the description to the lower triangle of the matrix A. On the blocks A;;_; and
Ait1,i—1 a QR decomposition is computed and the block rows ¢ and 7 + 1 are
multiplied with the obtained @ from the left as well as the block columns ¢ and
i+ 1 from the right. The symmetric application of ) shifts the fill-in by one block
row and one block column towards the lower end. By repeating the QR step, the
fill-in can be completely evicted from the matrix and the next factorization step
can be applied. The procedure for the upper matrix half is the same, only the
QR factorization is replaced by a QL factorization and the fill-in moves stepwise
towards the top left of the matrix.

Denoting the @s following the application of U; with ng), the series

U;, Ql(.l), QZ@), ceey QEV") applies one step of the factorization and restores the band.
Hence, using

r— — 1 v — 1
G- = Ut QW QU Uz QW) -

v _ 1 v _ 1 y
Q;ﬁl),Ull, g) §)~~~UP1~ ;,)... ggp)’

the overall transformation with restoring the band can be described as A=
U-HAUL

The eigenvalues of the SEP AX = XA are the same as the eigenvalues of the
GSEP AX = BXA, but for the eigenvectors a backtransformation step has to be
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Figure 10. The two steps of the algorithm (in the lower matrix half, upper matrix half similar
but mirrored): 1. (left) Applying the factorization (D;, E;) and performing the right sided
update of the two-sided Q-application. Since operating on different block columns, Q of different
factorization steps can be applied in parallel. Red indicates the bulge of newly created non-zeros
outside the band (in green). 2. (right) Eliminating the fill-in by generating the QR decomposition
and applying it from the left to the matrix. Since operating on different block rows, the QR
decomposition and the left sided application of @ of different factorization steps can be applied
in parallel.

applied. These eigenvectors of the GSEP can be found by applying U~ to the
eigenvectors of the SEP: X = U~ 1X.

Contrary to the computation of A the eigenvectors are multiplied from the left
with U~! and not with the hermitian of it. Therefore the order of the operations
is reverse: QEW), RN Ql(?), le), U;. Figure 11 gives an illustration of the updating
scheme. In the lower matrix half the applications of ng) update the block rows
i+ Kk —1 and i + k. After having applied the @s, D; multiplies the block row i
from the left and to this block row the 7 — 1st block row multiplied from the left
with F; is added. The block rows to update in the upper matrix half are slightly
different. ng) update the block rows ¢ —k+1 and ¢ — k and instead of multiplying
the ¢ — 1st block row with F;, the i 4 1st block row is added to block row 4 (which
has been multiplied by D).

Having a closer look on the application of the factorization and the generation
and application of the @), it can be seen that by splitting the two-sided application
of @ and by interchanging the order of the ng) a pipelining structure can be

obtained. It is based on the fact that a left sided update with ng) updates only
two consecutive block rows and a right sided update and the application of the
factorization only update two consecutive block columns. The order of execution
has to be kept within a factorization step, meaning ng) has to be executed before
Q(k-‘rl) (k+1)

i , but ng) can be executed at the same time as @);,; ’. Details on the
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Figure 11. Three consecutive steps in the backtransformation: The applications of different @
can be done in parallel in the same way the @ have been created (see Figure 10, right picture).
Finally, the D; and E; are applied.

interchangeability can be found in [15]. Figure 10 shows the pipelining structure
in the lower matrix half in the computation of A.

A similar pipelining scheme can be obtained for the backtransformation step:
All Qgﬁj ) can be applied to the eigenvectors simultaneously. Additionally, the
application of D; and F; can be decoupled from the application of the ng) and
can be executed afterwards. Figure 11 shows the application of different ng)
which can be executed concurrently.

Besides the pipelining scheme, U ! offers another parallelization layer which
comes by the twisted factorization. The operations in U1 first process the lower
matrix half and afterwards the upper matrix half. These operations, however,
do not overlap besides the twist block P that is updated by the upper and the
lower matrix half of the factorization. Therefore they can be run in parallel with
a synchronization point at the twist block. Concluding, the algorithm provides
three parallelization layers: parallel execution of the upper and lower matrix half,
parallel execution of the independent steps in the pipeline and parallelization of
the operations in the single blocks. Additionally, the use of a threaded BLAS
library can provide a fourth layer of parallelization.

The process setup is hence chosen in a way to exploit the parallelization lay-
ers. The available processes are separated in processes for the upper and the lower
matrix half. Processes of a matrix half are further subdivided into groups which
compute the operations of a block. These groups are ordered in a grid and if not
enough groups are available to fill all blocks, repeated cyclically. All operations
involve communication between the processes of two groups. Due to the constant
neighbourhood, local communicators are used to perform these operations effi-
ciently. In the backtransformation step the process setup is used in the same way,
exploiting to have the Householder vectors already in place.

Figures 12 and 13 show the strong scaling behaviour of the algorithm for
matrix sizes of 51200 and 204800. The overall runtime as well as the two main
steps are plotted: the backtransformation of the eigenvectors and the application
of UL, The bandwidth of the matrices was in both cases 1% of the matrix size.
Both matrix sizes show good scaling for a selected number of processes per group.
If all groups only hold one block further speedup can be achieved by using more
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Figure 12. Strong scaling for a matrix of size 51200. The bandwidth (and hence the blocksize) is
512, the twist index is at 25600. The backtransformation is done for 12800 eigenvectors (25%).
Per group 2 x 2 and 4 X 2 processes have been used. The runs have been carried out on the
Cobra Supercomputer.
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Figure 13. Strong scaling for a matrix of size 204800. The bandwidth (and hence the blocksize)
is 2048, the twist index is at 102400. The backtransformation is done for 25600 eigenvectors
(12.5%). Per group 5 x 4 and 8 x 5 processes have been used. The runs have been carried out
on the Cobra Supercomputer.

processes per group. Using more processes per group, however, comes along with a
loss in performance compared to the same number of processes with less processes
per group. Not shown here is the additional bandreduction step which is necessary
for bandwidth of size 512 or 2048. The savings compared to computing the dense
eigenvalue problem however, will still be significant.

For solving generalized eigenvalue problems with banded matrices this proce-
dure allows to compute eigenpairs at matrix sizes where the standard procedure
with factorizing B, applying B to A and using a standard dense solver for the
full resulting matrix C' would consume to much memory or result in way more
computation. When considering sparse eigenvalue solvers, the computation of



higher percentages of the eigenpairs becomes expensive. This approach, however,
provides the possibility to overcome this issue.

5. Applications

First-principles simulations in computational chemistry, solid state physics, and
materials science typically involve to determine the interactions between the
M nuclei described by 3M nuclear positions {FE} Being able to compute the
total energy of the system Eo({R}), i.e., the high dimensional potential energy
surface (PES), as a function of {R} and, ideally, its derivatives such as the forces
acting on the nuclei Fy({R}) = -Vz, Eo({R}), allows to investigate the prop-
erties of molecules and materials. For instance, one can systematically map out
the PES Eo({R}) to search for (stable) minima and saddle points between them
or explore it dynamically via molecular dynamics (MD) or statistical (e.g. Monte
Carlo) sampling. Accordingly, a typical computational study often requires to
determine Ey({R}) for thousands of nuclear configurations {R}.

Computing Ey({R}) requires to solve the quantum-mechanical electronic-
structure problem. In density-functional theory (DFT) [16], the most wide-spread
electronic-structure formalism, this requires to identify the electronic density n(7)
that minimizes the convex total-energy functional Ey = min E[n(7)]) for a given
number of electrons N = [ dn(r). In Kohn-Sham (KS) DFT [17], this variational
problem is mapped onto a series of eigenvalue problems (EVP), the so called
self-consistent field (SCF) formalism. In each step of the SCF cycle, the EVP

N
Hn(@] W) = 0(7)  with  n(7) = 3 0,72 (1)
s=1

is solved to determine the eigenstates W . The N eigenstates ¥, with the
lowest eigenvalues e allow to compute an updated and improved n(7), for
which Equation (1) is then solved again. This procedure is repeated until “self-
consistency” is achieved at the end of the so called SCF cycle, i.e., until a sta-
tionary solution with minimal E[n(7)] is found. In practice, a basis set expan-
sion Uy = 3" 24¢0;(7), e.g., in terms of Gaussians, plane waves, numerical func-
tions, etc., is used to algebraize and solve Equation (1). By this means, one obtains
the generalized EVP

Aln()) = ABz | 2)
the size of which is determined by the number of basis functions p;(7) employed

in the expansion. Here, the Hamiltonian A and the overlap matrix B are given
as:

Aij[n(F)] = /dfwf(F)H[n(F)] 0; (), Bij = /dﬁﬂf(ﬁs&j(ﬂ-



5.1. Autotuning: The Case of GPU Offloading

Due to the cubic scaling with system size, the generalized EVP (2) quickly be-
comes the numerical bottleneck in practical DFT calculations. It is thus more than
desirable to use optimal ELPA settings (ELPA1 vs. ELPA2, architecture-specific
kernels, etc.) to utilize the computational resources in the most efficient way so to
obtain the optimal time-to-solution. As discussed above, this is of particular im-
portance in first-principles simulations, which require solving many similar eigen-
value problems, e.g., the 10-100 individual SCF steps in one SCF cycle or the
thousands if not millions of SCF steps performed in an iterative exploration of
the PES Eo({R}). ELPA’s autotuning feature allows to determine these optimal
settings, which depend upon both the inspected physical problem and the used
architecture, in an automated way [3].

This is particularly important for new and upcoming architectures featur-
ing GPUs: This is exemplified in Figure 14, which shows calculations performed
with the FHI-aims code [18] using ELSI [19] as interface to ELPA and the PBE
exchange-correlation functional [20] for periodic Caesium Chloride crystals as
function of the number of basis functions used. For this purpose, calculations with
different system sizes, i.e., number of atoms, were performed. Since FHI-aims uses
local atomic orbitals [18], the number of basis functions increases with the num-
ber of atoms: For example, the smallest investigated system contains 16 atoms
and thus uses 496 basis functions, while the largest system contains 3,456 atoms
and 107,136 basis functions. For all system sizes, we benchmarked ELPA1 and
ELPA2 separately; in both cases, CPU only calculations as well as calculations
using CPUs and full GPU acceleration (for the tridiagonalization, the solution
of the eigenvalue problem, and the back transformation) were performed on four
Intel Skylake (Xeon Gold 6138) + nVidia Tesla V100 nodes with two CPUs and
GPUs each (20 cores/CPU @ 2.0 GHz).

As Figure 14 shows, the use of GPU acceleration offers a sizeable performance
increase for large systems with respect to CPU-only calculations for both ELPA1
and ELPA2, whereby the gains are more pronounced for ELPA1. The threshold
number of basis functions for which GPUs indeed accelerate the calculation is
essentially determined by the workload on each CPU and GPU. For too small
systems, the time spent transferring the data to the GPU is larger than the
actual computational gains due to the GPU. In this particular case, GPUs are
thus beneficial for ELPA1 for more than 10,000 basis functions and for ELPA2
for more than 20,000 basis functions. Overall, CPU-only ELPA1 is the fastest
solver up to 4,000 basis functions, CPU-only ELPA2 for system between 4,000 up
to roughly 20,000 basis functions, and CPU+GPU ELPA1 for all systems with
even larger number of basis functions. Note that this might be quite surprising
even for well-experienced ELPA users, given that ELPA2 is typically superior to
ELPA1 for large system sizes in the CPU only case, as also shown in Figure 14. In
practice, switching from CPU-only ELPA2 to CPU+GPU ELPA1 can thus lead
to significant savings in computational time around 30%, as it is the case for a
system size with 107,136 basis functions.

As shown above, optimal performance can only be achieved if different com-
binations of ELPA1 and ELPA2 with and without GPU acceleration are chosen
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Figure 14. Computational time per SCF step (in seconds) as function of the numbers of basis
functions employed. Solid lines denote ELPA1, dashed lines ELPA2 calculations. CPU-only and
CPUs+GPU calculations were performed. The shaded areas denote which setup is fastest for
different system sizes. The inlet shows the timings for system sizes at which CPU+GPU ELPA1
becomes the fastest solver (border between blue and red marked areas).

depending on the system size. Moreover, the actual threshold at which GPU ac-
celeration becomes beneficial strongly depends on the number of nodes employed
in the calculation: For smaller number of nodes, the workload on the individual
nodes increases and GPU acceleration becomes beneficial earlier, i.e., for smaller
system sizes. Eventually, let us note that for the calculations shown in Figure 14
the GPU acceleration was used for the tridiagonalization, the solution of the
eigenvalue problem, and the back transformation. In practice, it can be beneficial
to exploit GPUs only for a subset of these steps, as shown below. This particu-
lar application thus showcases the importance of ELPA’s autotuning functional-
ity, which saves the user from performing tedious benchmark calculations for all
different settings and prevents him from choosing sub-optimal settings, e.g., by
choosing ELPA2 for large systems based on previous CPU-only experience.

We have explicitly verified this by running calculations with autotuning en-
abled for two different system sizes with 13,392 and 31,744 basis functions, re-
spectively. As shown in Table 3, the autotuning procedure is able to identify an
optimal solution for both cases. In the smaller system with 13,392 basis functions,
CPU-only ELPA2 is the optimal solution. Note that in this case the CPU kernel
has been fixed to the AVX512-one in all calculations, otherwise also this param-
eter would have been optimized by the autotuning procedure [3]. For the larger
system with 31,744 basis functions, ELPA1 with GPU acceleration is identified
as the optimal setup. Compared to the earlier calculations shown in Figure 14,
the autotuning procedure found out that it is beneficial to use GPU acceleration
only for the tridiagonalization and the back transformation, whereas the solution
of the eigenvalue problem is better performed only on the CPUs. The additional
gain in computational saving of roughly 1% compared to the next-best solution
is not earth-shattering in this case, but still noticeable, given that in actual simu-
lations this 1% can be exploited for thousands if not millions of eigenvalue prob-
lems. As already discussed in [3], the cost of the autotuning procedure is well



Table 3. Computational time required for solving the KS equations in seconds for ELPA1 and
ELPA2 (CPU-only and CPU+GPU calculations) as well as for the optimal settings found by
ELPA’s autotuning functionality.

Number of ELPA1 ELPA1 ELPA2 ELPA2 Optimal
basis functions | CPU-only | CPU4+GPU | CPU-only | CPU+GPU
13,392 16.03s 13.29s 10.38s 12.05s 10.38s
31,744 211.40s 89.38s 110.90s 99.72s 88.73s

worth the gains in practical calculations. Although some sub-optimal setups such
as CPU+GPU ELPA1 and CPU-only ELPA1 are tested during the autotuning
for the small and large system, respectively, the benefits outrun these costs in the
long term.

5.2. Performance Benefits by Reduced Precision

In DFT simulations, the individual SCF iterations leading up to self-consistency
are of no particular interest. Only the final results of the converged SCF cycle have
any physical relevance at all. Hence, it is worthwhile to study how a reduction in
precision of the SCF procedure from double (DP) to single precision (SP) might
accelerate the generalized EVP as the numerical bottleneck of DFT simulations,
as long as the final converged result is not altered up to the precision required
by the problem at hand. In this section, the precision is independently controlled
for the following individual eigensolver steps: the Cholesky decomposition (i),
the matrix multiplication in (i) and (iv), and the solution of the eigenproblem
via tridiagonalization (iii) (see Section 3). Since SP in the matrix inversion step
U — U~! destroys the convergence entirely [3], the inversion of U is always
conducted in DP.

To demonstrate the gain in computational performance by both the algorith-
mic improvements and the readily available SP routines in the new version of
ELPA, we have performed DFT calculations with FHI-aims [18] using ELSI [19]
as interface to different ELPA versions. The model system chosen for performance
comparisons is selected from a class of novel, self-organizing materials, called
metal-organic frameworks (MOF). Their electric conductivity can be manipulated
and tuned by doping with different metal ions [21]. Due to the low concentration
of doping atoms, the theoretical description is challenging and requires the simu-
lation of extensive supercells with a large number of atoms and hence basis func-
tions. Therefore, the iron triazolate MOF doped with a single copper atom [22]
is an ideal benchmark system to quantify the speed-up achieved by different pre-
cisions by evaluating five SCF cycles and the atomic forces for supercells ranging
from 2,405 to 19,343 atoms and 30,167 to 244,529 basis functions, respectively.
The calculations were conducted on Intel Xeon 'Skylake’ (40 cores @ 2.4 GHz)
and compared to the FHI-aims internal ELPA 2013 (only DP available).

As shown in Figure 15, replacing the FHI-aims internal ELPA 2013 by
ELPA2018.11 (DP) provides a speed-up of about 1.6 for the solution of the Kohn-
Sham eigenvalue problem. For high-level parallelization, where ELPA 2013 does
not scale very well, speed-up factors over 2.0 can be achieved. The total computa-
tional time is reduced by an average speed-up factor of 1.3, which can go up to 1.7
for large runs. This speed-up comprises all improvements and developments in the
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Figure 15. Computational time for solving the Kohn-Sham equation in five SCF iterations (in
seconds) as function of the number of CPUs. Calculations conducted with the FHI-aims internal
ELPA 2013 are denoted in orange. Application of ELPA2018.11 with DP and SP in steps (i) to
(iv) are depicted in dark and light blue, respectively. The different line styles show the timings
for different system sizes from 30,167 (dotted) via 72,104 (dash-dotted) and 141,824 (solid) to
244,529 (dashed) basis functions (b.f.).

ELPA library since the FHI-aims internal ELPA 2013 version, such as AVX-512
kernel optimization, autotuning etc. (see Section 2) but without the application
of GPUs.

Table 4 summarizes the speed-up factors broken down into the individual
steps of the GSEP. The Cholesky decomposition (i) is only conducted in the first
SCF iteration of each SCF cycle, i.e., only once in each benchmark calculation.
The gain by reduction to SP in the Cholesky step (i) is minimal with a speed-up
factor of about 1.1. Whereas for strong-scaling situations with high parallelization
(< 20 basis functions / cpu), SP in the Cholesky decomposition can effectively
increase the computational time of this step. In contrast, SP in the matrix mul-
tiplication of step (ii) and (iv) efficiently reduces the cpu time to 50% of the DP
computational time (speed-up factor 2.0). Similarly, SP in the eigensolver (iii)
achieves a speed-up of factor 1.9 for the computational time of step (iii). The
combination of SP in steps (i), (ii), (iii), and (iv) provides a speed-up of about
1.7 for the solution of the Kohn-Sham eigenvalue problem and of about 1.3 for
the total computational time, unless parallelization is high (< 20 basis functions

/ cpu).

6. Conclusions

We have presented the recent advances in the ELPA eigenvalue solver project.
Due to the API changes the autotuning functionality is now available for users. It
allows also non-experts to find the best parameter setups for their runs. Especially
in the setting of electronic structure theory where many similar eigenvalue prob-
lems have to be solved, autotuning is a very powerful instrument. Additional gain
in computational time was demonstrated by a mixed-precision approach where
certain steps to solve a generalized eigenvalue problem are done in single instead



Table 4. Speed-up factors for SP versus DP (ELPA2018.11) for five SCF iterations and increas-
ing number of basis functions (b.f.) decomposed into each step of the GSEP solver: Cholesky
decomposition (i), transformation of GSEP to SEP (ii), solution of the eigenproblem via tridiag-
onalization (iii), and back-transformation of the eigenvectors (iv). The last two columns summa-
rize the speed-up factors for the computational time required for the solution of the Kohn-Sham
equation and for the total computational time.

No. b.f. (i) (i) (i) (@{Av) KS total

30,167 09 18 14 1.7 13 1.1

72,104 1.0 19 1.7 1.9 1.5 1.2

141,824 1.1 2.0 1.8 2.0 1.6 1.3

244,529 1.2 23 21 2.2 1.8 14

of double precision. The computational kernels and routines have been further
optimized and been ported for the newest GPU and CPU Hardware. This al-
lows to accelerate the computation of eigenvalues and eigenvectors and compute
even larger matrices. The new algorithmic developments improve the solution of
the generalized eigenvalue problems. For the banded and the dense matrix case
remarkable savings in computation time have been shown.
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