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SNL Mission: Advanced Science and
Engineering for National Security

 Nuclear Weapons
 Defense Systems and Assessments
 Energy and Climate
 Global Security
Strong research foundations span 
many disciplines

Dakota Mission: 
To serve Sandia’s mission through state-of-the-art research and robust, usable 
software for optimization and uncertainty quantification.

Dakota Team: has balanced strengths in algorithm research, software design 
and development, and application deployment and support
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Dakota: Algorithms for Design 
Exploration and Uncertainty Quantification

 Suite of iterative mathematical and statistical methods that 
interface to computational models

 Makes sophisticated parametric exploration 
of black-box simulations practical 
for a computational 
design-analyze-test cycle:
 Sensitivity Analysis
 Uncertainty Quantification
 Design Optimization
 Model Calibration

 Goal: provide scientists and engineers (analysts, designers, 
decision makers) richer perspective on model predictions
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Practical Design Exploration and
UQ for Diverse Simulations

 Applied to many science and engineering domains
mechanics, structures, shock, fluids, electrical, radiation, 
bio, chemistry, climate, infrastructure, etc.

 Diverse, often costly, simulation codes:
finite element, coupled multi-physics, discrete event, 
Matlab, Python models
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Reliability-based design 
optimization of micro-electro-
mechanical systems (MEMS)

UQ for qualification 
of electrical circuits in 
harsh environments

Adjoint-based UQ for robust 
design of satellite radiation 

shields

UQ and Bayesian 
inference for nuclear 
reactor core analysis
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Supports Credible Prediction
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sensitivity 
analysis to 
prioritize

forward UQ 
for validation

verification

calibrate
to data

design of 
experiments

forward UQ 
for prediction

Enables quantification of margins and uncertainty 
(QMU) and design with simulations; analogous to 
experiment-based QMU and physical design/test.
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Many Methods in One Tool

6

Sensitivity Analysis
• Designs: param. sweeps, MC/LHS, 

DACE, sparse grid, one-at-a-time
• Analysis: correlations, scatter, 

Morris effects, Sobol indices

Uncertainty Quantification
• MC/LHS/Adaptive sampling
• Local/global reliability
• Stochastic expansions
• Epistemic and interval methods
• Multi-fidelity/multi-level

Optimization
• Gradient-based local
• Derivative-free local
• Global/heuristics
• Surrogate-based, multi-fidelity

Calibration
• Tailored gradient-based
• Use any optimizer
• Bayesian inference

 One flexible simulation interface, many methods: once interface created,
apply appropriate algorithm depending on question at hand

 Scalable parallel computing from desktop to HPC
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Engineering Needs Drive Dakota R&D

Advanced approaches help you solve practical problems:
 Characterize parameter uncertainty → Bayesian calibration
 Hybrid analysis goals →  mix methods, surrogates, and models
 Mixed uncertainty characterizations →  

epistemic and mixed UQ approaches [1]
 Costly or noisy simulations →  surrogate-based optimization [2] and UQ
 Build in safety or robustness →  

mixed deterministic/probabilistic methods [3]
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Dakota History and Resources
 Genesis: 1994 optimization LDRD 
 Modern software quality and development practices
 Released every May 15 and Nov 15
 Established user support process and mailing list

 Extensive website: documentation, 
training slides/videos, downloads

 Open source to facilitate 
collaboration; widely downloaded

Mike Eldred, 
Founder

Lab mission-driven 
algorithm R&D deployed 
in production software
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Dakota Capability Directions

2016—2020 Strategic Plan stewards 
Dakota’s research program while improving 
production deployment and impact
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What is Dakota
Who We Are

Trends and Opportunities
Where We Are Going
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R&D Challenges

Tackle design exploration and UQ computational challenges 
(focusing on DOE national security mission):
 Severely constrained simulation budgets
 High-dimensional parameter spaces
 Non-smooth, multi-modal, or unreliable quantities of interest
 Quantifying small probabilities
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Active Algorithm R&D

 Core UQ: robust, scalable, adaptive sampling and stochastic expansions

 Multi-fidelity, multi-level optimization, inference, UQ methods

 Calibration: usable, robust deterministic and Bayesian methods

 Optimization: new gradient-based and discrete optimization methods

 Algorithms and interfaces that directly treat functional (time/space) data

 Scalability in number of parameters / responses and to next-generation 
architectures and parallelism models

 Reduced-order models: surrogates, 
active subspace, random field models
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Discontinuity-detecting 
piecewise local surrogate 

models (Ebeida)
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Multi-level/Multi-fidelity Methods

Goal: Use models of varying fidelities and/or levels to converge more quickly 
 ML/MF sampling, stochastic expansions, optimization, calibration
 Automatically balance evaluations of each model
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Multi-level: hierarchy of numerical approximation 
accuracies, e.g., mesh resolution, solver tolerance

Multi-fidelity: physics model detail; hierarchy or 
peers

Increased cost/accuracy
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See talks by Eldred, Geraci
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MLE

MAP

Inference: Bayesian Calibration

Goal: Obtain statistical characterization of parameters consistent with data
 MCMC with QUESO/DRAM and DREAM
 Adaptive, surrogate-based inference, including with ML/MF PCE
 Mutual information guided calibration of low-fi to high-fi model
 Usability: chain post-processing, statistics, credible/prediction intervals, 

KDE-smoothed posteriors, mutual information
Emerging capabilities
 Discrepancy models
 Metropolis-adjusted Langevin Algorithm
 Non-MCMC-based approaches
 Automated diagnostics and filtering
 Coupling with forward UQ methods

13

See talks by Jakeman, Maupin, Perego, Wildey
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Random Field Modeling

Goal: perform UQ with field-valued (time- or space-
varying) input uncertainties f(t, x), e.g., boundary 
conditions
 Generate realizations of f(t; u): either sample the 

field-generating model or use offline data
 Approximate uncertainty in f(t; u), e.g., by PCA + 

GP, or a Karhunen–Loève expansion with normal 
coefficients ω

 Propagate: perform UQ over ω, generating 
realizations of the approximate field �𝒇𝒇 𝑡𝑡,𝜔𝜔 and 
propagate through the field-accepting model
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Other Development Areas

 Modular architecture
 Ease Dakota development and give greater control to advanced users
 Example 1: Surrogate model 
 Example 2: Optimizer traits and APIs

 Usability and user resources
 Example 1: GUI
 Example 2: Output database
 Example 3: dakota.interfacing Python module
 Example 4: Examples repo

 Improved user community engagement
 Example 1: Dakota user-stakeholder meetings
 Example 2: Surveys and interviews
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Thanks for your attention!
briadam@sandia.gov

jasteph@sandia.gov pdhough@sandia.gov
Other team members presenting at SIAM UQ:

Eldred, Geraci, Jakeman, Khalil, Maupin, Swiler
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BACKUP (ADDITIONAL DETAILS)
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HPC Integration
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Massively Serial

Dakota runs in parallel 
and drives a large 
number of serial 

simulations

Evaluation Tiling

Dakota runs serially as 
part of a submitted job 

and “tiles” 
intermediate-sized 
parallel simulations 

across the job

Evaluation 
Submission

Dakota runs serially on 
the login node and 

submits large parallel 
simulations as 
separate jobs.

Dakota readily integrates into HPC environments

Three common use cases

 Example interface scripts provided
 Python modules in development

http://www.sandia.gov/


Graphical User Interface
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Interactive Dakota analysis environment
 Graphical input file editing
 Visualization/plotting
 Dakota-to-simulation interface wizard
 Integrated help
 Searchable examples
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Dakota Modularization: 
Surrogate Model Library

Initial prototype demonstrated
 Modularize foundational utilities and 

surrogate models
 Progress on unifying Dakota, Surfpack, Pecos
 Increasing unit testing, coverage, and 

software quality
 Python interfaces to C++ components for 

ease of use by advanced users
 Jupyter-based interactive Python tutorial 

demonstrates more usable coordination of 
model components with Python
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iPython Notebook
Collaboration 

Diagram
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dakota.interfacing

 Read params files/write results files

 Evaluation tiling helper
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Tools for Python-based black-box simulation interfacing

TODO
 Evaluation Submission 

helpers
 Template substitution
 Integration into GUI
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Promote User and Development
Community Engagement

 Web resources: 
 Interactive user forums
 Capability maturity ratings and test linkage
 Community repository of code, examples, scripts

 Training materials: presentations, videos, exercises
 New graphical user interface for Dakota analysis

 Improved modularity so users can extend, contribute components, e.g.,
 Surrogate model module with Python bindings
 More usable simulation interfacing that encourages best practices

 Communicate development practices to encourage contribution, e.g., 
principles, code standards, easier build/test on new platforms

 Portability to and scalability on new high-performance computers
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Thanks for your attention!
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Other team members presenting at SIAM UQ:
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