

Exceptional service in the national interest

Dakota Optimization and UQ Explore and Predict with Confidence

Brian M. Adams, J. Adam Stephens
Optimization and Uncertainty Quantification
Patricia D. Hough
Quantitative Modeling and Analysis

http://dakota.sandia.gov

2018 SIAM Conference on Uncertainty Quantification April 16—19, 2018
Garden Grove, CA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SNL Mission: Advanced Science and Engineering for National Security

- Nuclear Weapons
- Defense Systems and Assessments
- Energy and Climate
- Global Security

Strong research foundations span many disciplines

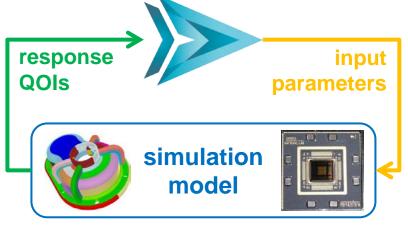
Dakota Mission:

To serve Sandia's mission through state-of-the-art research and robust, usable software for optimization and uncertainty quantification.

Dakota Team: has balanced strengths in algorithm research, software design and development, and application deployment and support

Dakota: Algorithms for Design Exploration and Uncertainty Quantification

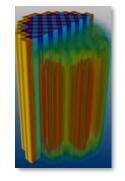
- Suite of iterative mathematical and statistical methods that interface to computational models
- Makes sophisticated parametric exploration of black-box simulations practical for a computational design-analyze-test cycle:
 - Sensitivity Analysis
 - Uncertainty Quantification
 - Design Optimization
 - Model Calibration



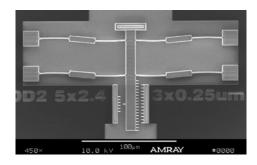
 Goal: provide scientists and engineers (analysts, designers, decision makers) richer perspective on model predictions

Practical Design Exploration and UQ for Diverse Simulations

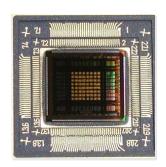
- Applied to many science and engineering domains mechanics, structures, shock, fluids, electrical, radiation, bio, chemistry, climate, infrastructure, etc.
- Diverse, often costly, simulation codes: finite element, coupled multi-physics, discrete event, Matlab, Python models



UQ and Bayesian inference for nuclear reactor core analysis



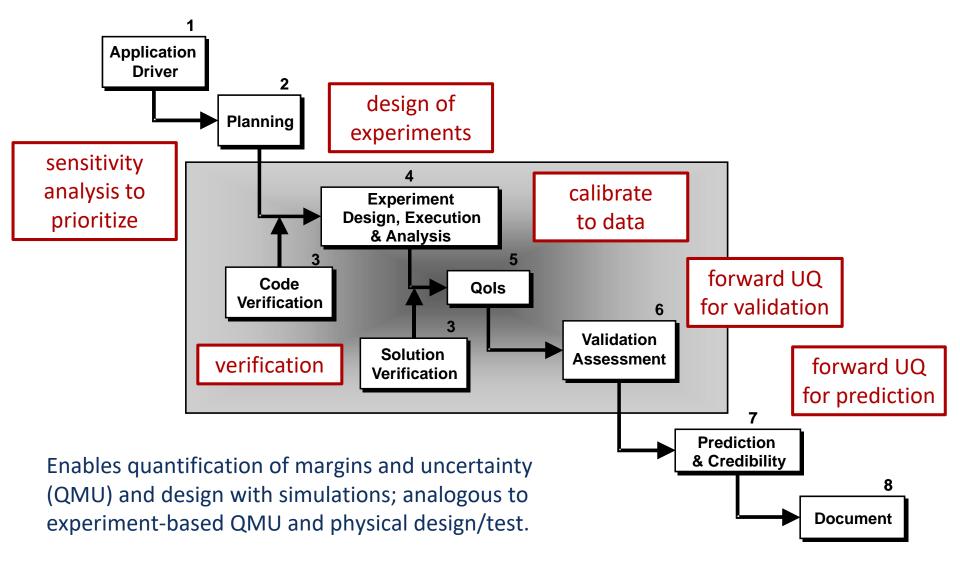
Reliability-based design optimization of micro-electromechanical systems (MEMS)



UQ for qualification of electrical circuits in harsh environments

Adjoint-based UQ for robust design of satellite radiation shields

Supports Credible Prediction



Many Methods in One Tool

Sensitivity Analysis

- Designs: param. sweeps, MC/LHS,
 DACE, sparse grid, one-at-a-time
- Analysis: correlations, scatter,
 Morris effects, Sobol indices

Uncertainty Quantification

- MC/LHS/Adaptive sampling
- Local/global reliability
- Stochastic expansions
- Epistemic and interval methods
- Multi-fidelity/multi-level

Optimization

- Gradient-based local
- Derivative-free local
- Global/heuristics
- Surrogate-based, multi-fidelity

Calibration

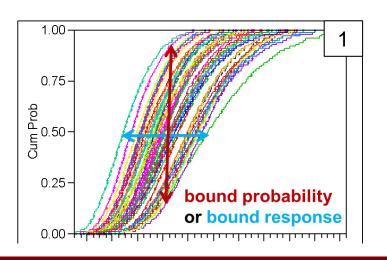
- Tailored gradient-based
- Use any optimizer
- Bayesian inference

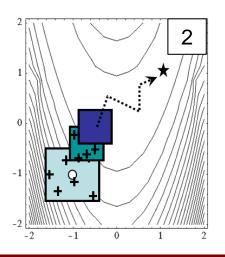
- ✓ One flexible simulation interface, many methods: once interface created, apply appropriate algorithm depending on question at hand
- ✓ Scalable parallel computing from desktop to HPC

Engineering Needs Drive Dakota R&D

Advanced approaches help you solve practical problems:

- Characterize parameter uncertainty → Bayesian calibration
- Hybrid analysis goals → mix methods, surrogates, and models
- Mixed uncertainty characterizations → epistemic and mixed UQ approaches [1]
- Costly or noisy simulations → surrogate-based optimization [2] and UQ
- Build in safety or robustness → mixed deterministic/probabilistic methods [3]





min
$$f(d) + Ws_u(d)$$
s.t. $g_l \leq g(d) \leq g_u$

$$h(d) = h_t$$

$$d_l \leq d \leq d_u$$

$$a_l \leq A_i s_u(d) \leq a_u$$

$$A_e s_u(d) = a_t$$

Dakota History and Resources

- Genesis: 1994 optimization LDRD
- Modern software quality and development practices
- Released every May 15 and Nov 15
- Established user support process and mailing list

Mike Eldred, Founder

Lab mission-driven algorithm R&D deployed in production software

- Extensive website: documentation, training slides/videos, downloads
- Open source to facilitate collaboration; widely downloaded

Dakota Capability Directions

2016—2020 Strategic Plan stewards
Dakota's research program while improving
production deployment and impact

R&D Challenges

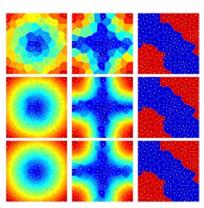
Tackle design exploration and UQ computational challenges (focusing on DOE national security mission):

- Severely constrained simulation budgets
- High-dimensional parameter spaces
- Non-smooth, multi-modal, or unreliable quantities of interest
- Quantifying small probabilities

Active Algorithm R&D

- Core UQ: robust, scalable, adaptive sampling and stochastic expansions
- Multi-fidelity, multi-level optimization, inference, UQ methods
- Calibration: usable, robust deterministic and Bayesian methods
- Optimization: new gradient-based and discrete optimization methods
- Algorithms and interfaces that directly treat functional (time/space) data
- Scalability in number of parameters / responses and to next-generation architectures and parallelism models
- Reduced-order models: surrogates, active subspace, random field models

Discontinuity-detecting piecewise local surrogate models (Ebeida)

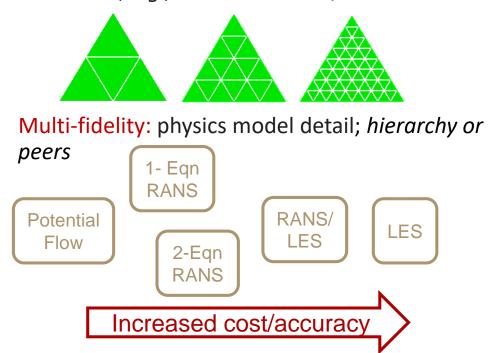


Multi-level/Multi-fidelity Methods

Goal: Use models of varying fidelities and/or levels to converge more quickly

- ML/MF sampling, stochastic expansions, optimization, calibration
- Automatically balance evaluations of each model

Multi-level: hierarchy of numerical approximation accuracies, e.g., mesh resolution, solver tolerance



	level		
fidelity	\$ 1000's	\$\$ 100's	\$\$\$ 10's
lity	\$\$ 100's	\$\$\$ 10's	\$\$\$\$ 1

See talks by Eldred, Geraci

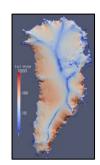
Inference: Bayesian Calibration

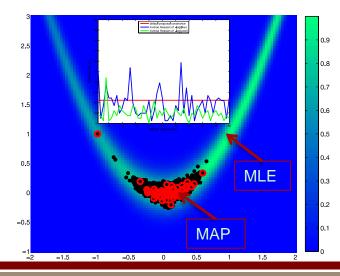
Goal: Obtain statistical characterization of parameters consistent with data

- MCMC with QUESO/DRAM and DREAM
- Adaptive, surrogate-based inference, including with ML/MF PCE
- Mutual information guided calibration of low-fi to high-fi model
- Usability: chain post-processing, statistics, credible/prediction intervals,
 KDE-smoothed posteriors, mutual information

Emerging capabilities

- Discrepancy models
- Metropolis-adjusted Langevin Algorithm
- Non-MCMC-based approaches
- Automated diagnostics and filtering
- Coupling with forward UQ methods





See talks by Jakeman, Maupin, Perego, Wildey

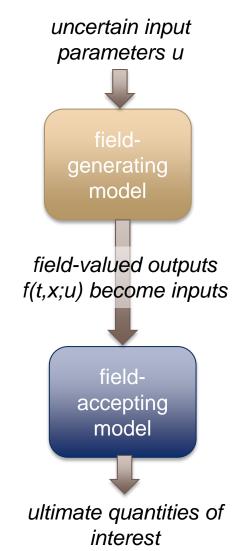
Random Field Modeling

Goal: perform UQ with field-valued (time- or space-varying) input uncertainties f(t, x), e.g., boundary conditions

- Generate realizations of f(t; u): either sample the field-generating model or use offline data
- Approximate uncertainty in f(t; u), e.g., by PCA + GP, or a Karhunen–Loève expansion with normal coefficients ω

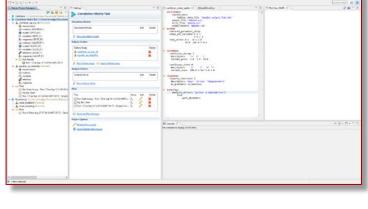
$$\hat{f}(t,\omega) = \mu_f(t) + \sum_{i=1}^{P} c_i(\omega) \, \varphi_i (t)$$

• Propagate: perform UQ over ω , generating realizations of the approximate field $\hat{f}(t,\omega)$ and propagate through the field-accepting model



Other Development Areas

- Modular architecture
 - Ease Dakota development and give greater control to advanced users
 - Example 1: Surrogate model
 - Example 2: Optimizer traits and APIs
- Usability and user resources
 - Example 1: GUI
 - Example 2: Output database
 - Example 3: dakota.interfacing Python module
 - Example 4: Examples repo
- Improved user community engagement
 - Example 1: Dakota user-stakeholder meetings
 - Example 2: Surveys and interviews



http://dakota.sandia.gov

Thanks for your attention!

briadam@sandia.gov jasteph@sandia.gov pdhough@sandia.gov Other team members presenting at SIAM UQ: Eldred, Geraci, Jakeman, Khalil, Maupin, Swiler

BACKUP (ADDITIONAL DETAILS)

HPC Integration

Dakota readily integrates into HPC environments

Massively Serial

Dakota runs in parallel and drives a large number of serial simulations

Evaluation Tiling

Dakota runs serially as part of a submitted job and "tiles" intermediate-sized parallel simulations across the job

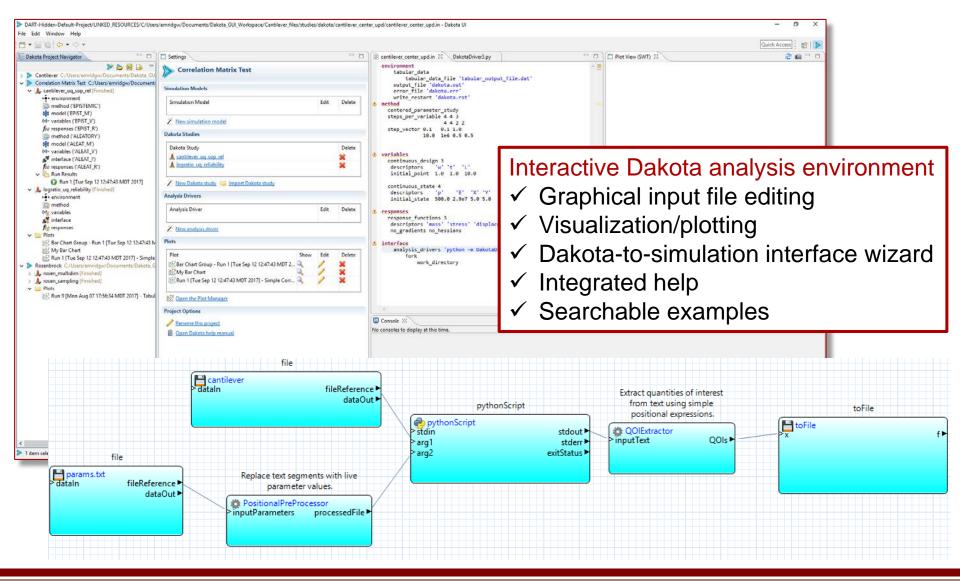
Three common use cases

- Example interface scripts provided
- Python modules in development

Evaluation Submission

Dakota runs serially on the login node and submits large parallel simulations as separate jobs.

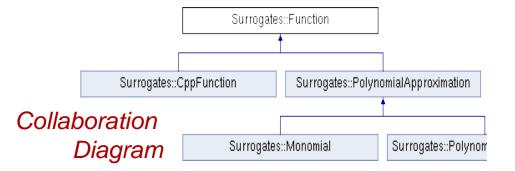
Graphical User Interface



Dakota Modularization: Surrogate Model Library

Initial prototype demonstrated

- Modularize foundational utilities and surrogate models
- Progress on unifying Dakota, Surfpack, Pecos
- Increasing unit testing, coverage, and software quality
- Python interfaces to C++ components for ease of use by advanced users
- Jupyter-based interactive Python tutorial demonstrates more usable coordination of model components with Python



Building an monomial approximation of a function

Environment setup

```
In [7]: # Reload all modules (except those excluded by %aimport) every time b
```

iPython Notebook

dakota.interfacing

Tools for Python-based black-box simulation interfacing

Read params files/write results files

```
1 #!/usr/bin/env python
2
3 import dakota.interfacing as di
4 from rosenbrock import rosenbrock_function
5
6 params, results = di.read_parameters_file()
7
8 x1 = params['x1']
9 x2 = params['x2']
10
11 results['f'].function = rosenbrock_function(x1, x2)
12
13 results.write()
14 | | |
```

Evaluation tiling helper

```
#!/bin/bash

params=$1
results=$2

# For dynamic scheduling:
mpitile -np 2 text_book_simple_par $params $results
```

TODO

- □ Evaluation Submission helpers
- ☐ Template substitution
- □ Integration into GUI

Promote User and Development Community Engagement

- Web resources:
 - Interactive user forums
 - Capability maturity ratings and test linkage
 - Community repository of code, examples, scripts
- Training materials: presentations, videos, exercises
- New graphical user interface for Dakota analysis

- Improved modularity so users can extend, contribute components, e.g.,
 - Surrogate model module with Python bindings
 - More usable simulation interfacing that encourages best practices
- Communicate development practices to encourage contribution, e.g., principles, code standards, easier build/test on new platforms
- Portability to and scalability on new high-performance computers

http://dakota.sandia.gov

Thanks for your attention!

briadam@sandia.gov jasteph@sandia.gov pdhough@sandia.gov Other team members presenting at SIAM UQ: Eldred, Geraci, Jakeman, Khalil, Maupin, Swiler