
mystic: rigorous model certification and
engineering design under uncertainty

Mike McKerns

http://www.uqfoundation.org

a framework for highly-constrained non-convex optimization and UQ

motivation: automated design of materials

 •  what is the molecular structure that best
produces the desired materials properties?
–  can we optimize the probability that a structure

will produce the desired properties within some
tolerance?

•  what is the optimal reaction path between
two molecular configurations?
–  can we optimize the probability that a transition

will occur between the initial and final states?

•  can we address these questions directly?
–  can we formulate a quantity of interest (QOI) as a

“goodness” metric, where we can use any and all
information to constrain an automated search
that considers only the space of viable solutions?

ExMatEx ExMat Ex
Extreme Materials at Extreme Scale

typical problem: model of impact plasticity

…	

…		

…		

a realistic model can be very expensive

optimization can be very very expensive

§  …	

§  …	

…	

…		•  …	

•  …	
–  …	
–  …	

•  …	

•  …	

…		

sensitivity = - |F(x') - F(x)|2

UQ run over 8 days over distributed resources

the need for optimizer-based parallelism

•  cluster-scale objective functions require:
–  large-scale parallel and distributed computing
–  asynchronous execution
–  monitoring, caching, archiving, and job restarts
–  dynamic decision making
–  efficient batch execution of the model

•  optimizers, however, tend to be:
–  notoriously serial (iterative process)
–  (synchronously) bound to a model
–  diagnostic-limited and stateless
–  of fixed execution strategy
–  efficient in solver algorithmic speed

 …the opposite of what is required!

 # the function to be minimized
 # and initial values
 import taylor as my_model
 x0 = [0.8, 1.2, 0.7]

 # obtain the solution
 import diffev as solver
 solution = solver(my_model, x0)

op'miza'on	tends	to	be	blocking	
un'l	a	solu'on	is	found		

parallel graph execution and statefulness

 # the function to be minimized and the bounds
 from mystic.models import rosen as my_model
 lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

 # get monitor and termination condition objects
 from mystic.monitors import LoggingMonitor
 stepmon = LoggingMonitor(1, 'log.txt')
 from mystic.termination import ChangeOverGeneration
 COG = ChangeOverGeneration()

 # select the parallel launch configuration
 from pyina.launchers import TorqueMpi
 my_map = TorqueMpi('25:ppn=8').map

 # instantiate and configure the nested solver
 from mystic.solvers import PowellDirectionalSolver
 my_solver = PowellDirectionalSolver(len(lb))
 my_solver.SetStrictRanges(lb, ub)
 my_solver.SetEvaluationLimits(1000)

 # instantiate and configure the outer solver
 from mystic.solvers import BuckshotSolver
 solver = BuckshotSolver(len(lb), 200)
 solver.SetRandomInitialPoints(lb, ub)
 solver.SetGenerationMonitor(stepmon)
 solver.SetNestedSolver(my_solver)
 solver.SetSolverMap(my_map)
 solver.Solve(my_model, COG)
 # obtain the solution
 solution = solver.bestSolution

•  available	launchers:	
–  mul'process,	threaded	
–  MPI	parallel	
–  RPC/IPC	(distributed)	
–  SSH	
–  GPU,	cloud	

•  available	schedulers:	
–  torque,	slurm,	lsf	
	

•  hierarchical	maps	can	be	
built	with	a	coupling	
strategy	

F(x)

F(x)

DB

local memory cache

central archive

automated state
saving and sharing

cache-to-archive
interaction

caching to memory,
hdf, file, directory,
database

massively-parallel ensemble optimizers
…	

Simplex:	1000s	
(100	points		at	
10s	/point)	

Buckshot	
Simplex:	200s	
for	batch	of	
100	solvers	on	
512	cores	

Powell:	500s	
(100	points		at	
5s	/point)	

Buckshot	Powell:	
68s	for	batch	of	
100	solvers	on	
512	cores		

Diff	Ev:	9500s	
(100	points		at	
95s	/point)		
popula'on	of	
40	

Single	Buckshot	Powell	
search	for	all	minima	

ensemble global search and interpolation
…	

Two-itera'on	Buckshot	
Powell	search	for	all	minima.	
	
Interpolate	points	to	build	a	
surrogate.	

“cache”	in	this	case	is	an	abstrac'on	
on	storage.	“load”	is	local	memory	
cache,	while	“hit”	is	an	archive	hit.	
“miss”	is	a	new	point.		Results	shown	
are	for	when	configured	for	direct	
connec'vity	with	archival	database.	

interpolated	surfaces	due	
to	search	for	extrema	
and/or	cri'cal	points	

scalable: dynamic asynchronous execution

 # the function to be minimized and initial values
 import taylor as my_model
 x0 = [0.8, 1.2, 0.7]

 # get monitor and termination condition objects
 from mystic.monitors import VerboseMonitor
 stepmon = VerboseMonitor(5)
 from mystic.termination import ChangeOverGeneration
 terminate = ChangeOverGeneration()

 # instantiate and configure the solver
 from mystic.solvers import DifferentialEvolutionSolver
 solver = DifferentialEvolutionSolver(len(x0))
 solver.SetSaveFrequency(100, 'solver.pkl')
 solver.SetInitialPoints(x0)
 solver.SetGenerationMonitor(stepmon)
 solver.SetObjective(my_model)
 solver.SetTermination(terminate)
 solver.Solve()

 # obtain the solution
 solution = solver.bestSolution

 # obtain diagnostic information
 function_evals = solver.evaluations
 iterations = solver.generations
 cost = solver.bestEnergy

 # modify the solver configuration; restart
 from mystic.termination import VTR, Or
 COG = ChangeOverGeneration(tolerance=1e-8)
 solver.SetTermination(Or(VTR(),COG))
 solver.Step()
 solver.Step()

 # obtain the current best solution
 solution = solver.bestSolution

•  plug-and-play components:
–  monitoring, logging, caching
–  population generators, parallelism
–  penalties, constraints, stop conditions

an optimizer has state

transforms: simplify and reduce search space

•  box (range) constraints
•  nonlinear (functional) constraints
•  uniqueness and set-membership constraints
•  probabilistic and statistical constraints
•  constraints imposing sampling statistics
•  inputs from sampling distributions
•  constraints from legacy data (points and data sets)
•  constraints from models and distance metrics
•  constraints on (product) measures
•  support vector (weight, independence) collapse

dimensional	collapse	
enables	greater	accuracy	
with	less	itera'ons	

collapse	

constraints may be solved by nested optimizations

penalties and constrained optimization

box
constraints

penalty
functions

 from mystic.math.measures import mean, spread
 from mystic.constraints import with_penalty, with_mean
 from mystic.constraints import quadratic_equality

 # build a penalty function
 @with_penalty(quadratic_equality, kwds={'target':5.0})
 def penalty(x, target):
 return mean(x) - target

 # define an objective
 def cost(x):
 return abs(sum(x) - 5.0)

 # solve using a penalty
 from mystic.solvers import fmin
 x = array([1,2,3,4,5])
 y = fmin(cost, x, penalty=penalty)

 # build a kernel transformation
 @with_mean(5.0)
 def constraint(x):
 return x

 # solve using constraints
 y = fmin(cost, x, constraints=constraint)

explicit and can be parallelized,
can strongly reduce search space

fast, but implicit, inaccurate, and
can add spurious features

Traditional constraints methods
apply a penalty to the cost
when the constraints are
violated

data point
& functional
constraints

operators that commute
can be spawned in parallel

Decoupling constraints often
produces a convex
optimization for the QOI

example: global MIP with symbolic constraints

•  …
–  …

•  …
–  …

•  …
–  …

over-fitting can be avoided with better tools

•  over-fitting is a
consequence of having
missing information that
fails to inform the
optimizer

•  can come from:
–  missing or approximate

constraining information
–  abstract convergence

criteria (scoring function)
–  poor objective function

•  no over-fitting if:
–  all constraining information is explicitly applied (by kernel transformation)
–  objective and scoring function are the QOI and our actual quality metric

UQ objectives: “how good is my model?”

 we want to estimate

Shock Experiment
Shock Simulation

we can compute

likelihood of failure

model error (for the entire curve)

model error (for a scalar QOI)

model uncertainty

statistical error

needle in an infinite-dimensional haystack

optimal bound on
the statistical error

the optimal model is obtained by minimizing
the optimal bound on the statistical error

optimal design requires nested infinite-dimensional optimizations

•  min/max nested optimizations of all possible outcomes over
all possible models of the material
–  coordinate space provides a huge combinatorial problem
–  with an optimization over all possible outcomes of the above

•  in terms of all possible states, the configurations that provide
the desired properties are usually quite rare

•  …	
–  …	
–  …

how to solve it? simplify, simplify, simplify

optimal bound on
the statistical error

the optimal model is obtained by minimizing
the optimal bound on the statistical error

•  select the “most likely” distribution
–  collapse optimization to the sub-manifold of coordinate space

•  select the form of the model
–  collapse to a single parameterized model or class of models

•  solve a difficult finite-dimensional machine learning problem
•  then typically use monte-carlo estimation to obtain bounds	

OUQ: a robust uncertainty theory

 •  …

–  …

•  …
– …

•  …
– …

extremes are bound
by information in the
form of constraints

formulated to handle
UQ for catastrophic
rare-events

OUQ reduces infinite to finite dimensional

optimal bound on
the statistical error

OUQ problems reduce to searches over finite
dimensional families of extremal scenarios of

The dimension of the reduced problem is
proportional to the number of probabilistic

inequalities that describe

•  optimization is over product measures
–  does not require selection of a probability distribution
–  imposes constraining information on the possible distributions

•  valid only when solving for extrema
–  this is what we want when solving for worst-case bounds
–  much cheaper and more rigorous than monte carlo sampling

•  …	
–  …	
–  …

UQ with unknown probability distributions

•  OUQ is an optimization problem to
find the rigorous bounds on system
behavior

–  all information is captured as constraints
–  constraints restrict the set of all possible

solutions (by directly constraining solution
space)

–  systems with minimal to no experimental
data or unobserved rare events that govern
system behavior

•  instead of selecting a "best" model or
distribution or prior, we can optimize
over all possible models,
distributions, or priors.

–  selecting a model or distribution is treated
as an assumption or information (i.e. a
constraint)

–  our "prior" step becomes one of quantifying
all the knowledge we have about the
problem, and then encoding that
knowledge as constraints

•  min/max on probability measure
space (not input parameter space)

•  mean-constrained optimization
balances weights and positions of
Dirac masses around a critical point

probability distribution

probability measure
(of Dirac masses)

critical point (mean constraint)

how many points are required? N+1 or less,
where N is the number or constraints.

Support Points at iteration 0

initial representation of probability distribution…

Support Points at iteration 1000

…solver looks for extremal cases…

Support Points at iteration 3000

…collapses candidate scenarios…

Support Points at iteration 7100

…solves for extrema in probability of failure

optimal success
scenarios

optimal success
scenarios

rigorous model validation and engineering design

 •  …
–  …

•  …
–  …

•  …
–  …

We can test how measurements of new
information (by adding a new constraint on the
inputs or outputs) alters the probability of
failure.

We perform a design of “experiments” to discover an information set
that can certify the system as “safe” (not failing within the given tolerance)

worst-case bounds on probability of failure

OUQ bounds are calculated with a
mean constraint on δ, a mean
constraint and a variance constraint
on δ, a mean constraint on z, and a
mean constraint on δ and a mean
constraint on z.

The effect of having different
information constraints can be seen
on the calculated bounds. More
specifically, the presence of
additional information can be seen
to generally tighten the bounds.

•  …
–  …

•  …
–  …
–  …

Probability that the shock wave reaches steady state
at x% of the mean distance z

OUQ bounds detect rare events. Compare to bounds
calculated with Monte Carlo sampling (100000 points)

outlook and opportunities

•  simpler interface for mystic in machine learning
•  new high-level optimization workflows and strategies
•  new auto-dimensional reduction conditions
•  new interpolation strategies and constraints/transforms
•  improving speed through multi-grid solvers

•  new releases of mystic is available at:
–  https://github.com/uqfoundation

•  documentation and tutorials:
–  http://mystic.readthedocs.io
–  https://github.com/mmckerns/tutmom

•  I invite any contributors and collaborators:
–  contact me at: mmckerns@uqfoundation.org

 End Presentation

