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motivation: automated design of materials 

 •  what is the molecular structure that best 
produces the desired materials properties? 
–  can we optimize the probability that a structure 

will produce the desired properties within some 
tolerance? 

•  what is the optimal reaction path between 
two molecular configurations? 
–  can we optimize the probability that a transition 

will occur between the initial and final states? 

•  can we address these questions directly? 
–  can we formulate a quantity of interest (QOI) as a 

“goodness” metric, where we can use any and all 
information to constrain an automated search 
that considers only the space of viable solutions? 

ExMatEx ExMat Ex 
Extreme Materials at Extreme Scale 



typical problem: model of impact plasticity 
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a realistic model can be very expensive 



optimization can be very very expensive 
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sensitivity = - |F(x') - F(x)|2  

UQ run over 8 days over distributed resources 



the need for optimizer-based parallelism 

 

 

•  cluster-scale objective functions require:  
–  large-scale parallel and distributed computing 
–  asynchronous execution 
–  monitoring, caching, archiving, and job restarts 
–  dynamic decision making 
–  efficient batch execution of the model 

•  optimizers, however, tend to be:  
–  notoriously serial (iterative process) 
–  (synchronously) bound to a model 
–  diagnostic-limited and stateless 
–  of fixed execution strategy 
–  efficient in solver algorithmic speed 

     …the opposite of what is required! 

  # the function to be minimized
   # and initial values
   import taylor as my_model
   x0 = [0.8, 1.2, 0.7]

   # obtain the solution
   import diffev as solver
   solution = solver(my_model, x0) 

op'miza'on	tends	to	be	blocking	
un'l	a	solu'on	is	found		



parallel graph execution and statefulness 

 

 

   # the function to be minimized and the bounds
   from mystic.models import rosen as my_model
   lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

   # get monitor and termination condition objects
   from mystic.monitors import LoggingMonitor
   stepmon = LoggingMonitor(1, 'log.txt')
   from mystic.termination import ChangeOverGeneration
   COG = ChangeOverGeneration()

   # select the parallel launch configuration
   from pyina.launchers import TorqueMpi
   my_map = TorqueMpi('25:ppn=8').map

   # instantiate and configure the nested solver
   from mystic.solvers import PowellDirectionalSolver
   my_solver = PowellDirectionalSolver(len(lb))
   my_solver.SetStrictRanges(lb, ub)
   my_solver.SetEvaluationLimits(1000)

   # instantiate and configure the outer solver
   from mystic.solvers import BuckshotSolver
   solver = BuckshotSolver(len(lb), 200)
   solver.SetRandomInitialPoints(lb, ub)
   solver.SetGenerationMonitor(stepmon)
   solver.SetNestedSolver(my_solver)
   solver.SetSolverMap(my_map)
   solver.Solve(my_model, COG)
   # obtain the solution
   solution = solver.bestSolution 

•  available	launchers:	
–  mul'process,	threaded	
–  MPI	parallel	
–  RPC/IPC	(distributed)	
–  SSH	
–  GPU,	cloud	

•  available	schedulers:	
–  torque,	slurm,	lsf	
	

•  hierarchical	maps	can	be	
built	with	a	coupling	
strategy	

F(x) 

F(x) 

DB 

local memory cache 

central archive 

automated state 
saving and sharing 
 

cache-to-archive 
interaction 
 

caching to memory, 
hdf, file, directory, 
database 



massively-parallel ensemble optimizers 
…	

Simplex:	1000s	
(100	points		at	
10s	/point)	

Buckshot	
Simplex:	200s	
for	batch	of	
100	solvers	on	
512	cores	

Powell:	500s	
(100	points		at	
5s	/point)	

Buckshot	Powell:	
68s	for	batch	of	
100	solvers	on	
512	cores		

Diff	Ev:	9500s	
(100	points		at	
95s	/point)		
popula'on	of	
40	



Single	Buckshot	Powell	
search	for	all	minima	

ensemble global search and interpolation 
…	

Two-itera'on	Buckshot	
Powell	search	for	all	minima.	
	
Interpolate	points	to	build	a	
surrogate.	

“cache”	in	this	case	is	an	abstrac'on	
on	storage.	“load”	is	local	memory	
cache,	while	“hit”	is	an	archive	hit.	
“miss”	is	a	new	point.		Results	shown	
are	for	when	configured	for	direct	
connec'vity	with	archival	database.	

interpolated	surfaces	due	
to	search	for	extrema	
and/or	cri'cal	points	



scalable: dynamic asynchronous execution 

 

 

   # the function to be minimized and initial values
   import taylor as my_model
   x0 = [0.8, 1.2, 0.7]

   # get monitor and termination condition objects
   from mystic.monitors import VerboseMonitor
   stepmon = VerboseMonitor(5)
   from mystic.termination import ChangeOverGeneration
   terminate = ChangeOverGeneration()

   # instantiate and configure the solver
   from mystic.solvers import DifferentialEvolutionSolver
   solver = DifferentialEvolutionSolver(len(x0))
   solver.SetSaveFrequency(100, 'solver.pkl')
   solver.SetInitialPoints(x0)
   solver.SetGenerationMonitor(stepmon)
   solver.SetObjective(my_model)
   solver.SetTermination(terminate)
   solver.Solve()

   # obtain the solution
   solution = solver.bestSolution 

   # obtain diagnostic information
   function_evals = solver.evaluations
   iterations = solver.generations
   cost = solver.bestEnergy

   # modify the solver configuration; restart
   from mystic.termination import VTR, Or
   COG = ChangeOverGeneration(tolerance=1e-8)
   solver.SetTermination(Or(VTR(),COG))
   solver.Step()
   solver.Step()

   # obtain the current best solution
   solution = solver.bestSolution 

•  plug-and-play components: 
–  monitoring, logging, caching 
–  population generators, parallelism 
–  penalties, constraints, stop conditions 

an optimizer has state 



transforms: simplify and reduce search space 

 
 
 

 

•  box (range) constraints 
•  nonlinear (functional) constraints 
•  uniqueness and set-membership constraints 
•  probabilistic and statistical constraints  
•  constraints imposing sampling statistics 
•  inputs from sampling distributions 
•  constraints from legacy data (points and data sets) 
•  constraints from models and distance metrics  
•  constraints on (product) measures 
•  support vector (weight, independence) collapse 

dimensional	collapse	
enables	greater	accuracy	
with	less	itera'ons	

collapse	

constraints may be solved by nested optimizations 



penalties and constrained optimization 

 

 

box 
constraints 

penalty 
functions 

  from mystic.math.measures import mean, spread
  from mystic.constraints import with_penalty, with_mean
  from mystic.constraints import quadratic_equality

  # build a penalty function
  @with_penalty(quadratic_equality, kwds={'target':5.0})
  def penalty(x, target):
    return mean(x) - target

  # define an objective
  def cost(x):
    return abs(sum(x) - 5.0)

  # solve using a penalty
  from mystic.solvers import fmin
  x = array([1,2,3,4,5])
  y = fmin(cost, x, penalty=penalty)

  # build a kernel transformation
  @with_mean(5.0)
  def constraint(x):
    return x

  # solve using constraints
  y = fmin(cost, x, constraints=constraint)

explicit and can be parallelized, 
can strongly reduce search space 

fast, but implicit, inaccurate, and 
can add spurious features 

Traditional constraints methods 
apply a penalty to the cost 
when the constraints are 
violated 

data point 
& functional 
constraints 

operators that commute 
can be spawned in parallel 

Decoupling constraints often 
produces a convex 
optimization for the QOI 



example: global MIP with symbolic constraints 
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over-fitting can be avoided with better tools  

 

 

•  over-fitting is a 
consequence of having 
missing information that 
fails to inform the 
optimizer    

•  can come from: 
–  missing or approximate 

constraining information 
–  abstract convergence 

criteria (scoring function) 
–  poor objective function 

•  no over-fitting if: 
–  all constraining information is explicitly applied (by kernel transformation) 
–  objective and scoring function are the QOI and our actual quality metric 



UQ objectives: “how good is my model?” 

 

 we want to estimate 

Shock Experiment 
Shock Simulation 

we can compute 

likelihood of failure 

model error (for the entire curve) 

model error (for a scalar QOI) 

model uncertainty 

statistical error 



needle in an infinite-dimensional haystack 

 

 

optimal bound on 
the statistical error 

the optimal model is obtained by minimizing 
the optimal bound on the statistical error 

optimal design requires nested infinite-dimensional optimizations 

•  min/max nested optimizations of all possible outcomes over 
all possible models of the material   
–  coordinate space provides a huge combinatorial problem 
–  with an optimization over all possible outcomes of the above 

•  in terms of all possible states, the configurations that provide 
the desired properties are usually quite rare 

•  …	
–  …	
–  … 



how to solve it?  simplify, simplify, simplify 

 

 

optimal bound on 
the statistical error 

the optimal model is obtained by minimizing 
the optimal bound on the statistical error 

•  select the “most likely” distribution  
–  collapse optimization to the sub-manifold of coordinate space 

•  select the form of the model 
–  collapse to a single parameterized model or class of models 

•  solve a difficult finite-dimensional machine learning problem 
•  then typically use monte-carlo estimation to obtain bounds	



OUQ: a robust uncertainty theory 

 

 •  … 

–  … 

•  … 
– …  

•  … 
– … 

extremes are bound 
by information in the 
form of constraints 
 
formulated to handle 
UQ for catastrophic 
rare-events 



OUQ reduces infinite to finite dimensional 

 

 

optimal bound on 
the statistical error 

OUQ problems reduce to searches over finite 
dimensional families of extremal scenarios of  

The dimension of the reduced problem is 
proportional to the number of probabilistic 

inequalities that describe  

•  optimization is over product measures 
–  does not require selection of a probability distribution 
–  imposes constraining information on the possible distributions 

•  valid only when solving for extrema 
–  this is what we want when solving for worst-case bounds 
–  much cheaper and more rigorous than monte carlo sampling 

•  …	
–  …	
–  … 



UQ with unknown probability distributions 

 

 

•  OUQ is an optimization problem to 
find the rigorous bounds on system 
behavior 

–  all information is captured as constraints 
–  constraints restrict the set of all possible 

solutions (by directly constraining solution 
space)  

–  systems with minimal to no experimental 
data or unobserved rare events that govern 
system behavior 

•  instead of selecting a "best" model or 
distribution or prior, we can optimize 
over all possible models, 
distributions, or priors. 

–  selecting a model or distribution is treated 
as an assumption or information (i.e. a 
constraint) 

–  our "prior" step becomes one of quantifying 
all the knowledge we have about the 
problem, and then encoding that 
knowledge as constraints 

•  min/max on probability measure 
space (not input parameter space) 

•  mean-constrained optimization 
balances weights and positions of 
Dirac masses around a critical point 

probability distribution  

probability measure 
(of Dirac masses) 

critical point  (mean constraint) 

how many points are required?  N+1 or less, 
where N is the number or constraints. 



Support Points at iteration 0 

initial representation of probability distribution… 



Support Points at iteration 1000 

…solver looks for extremal cases… 



Support Points at iteration 3000 

…collapses candidate scenarios… 



Support Points at iteration 7100 

…solves for extrema in probability of failure 

optimal success 
scenarios  

optimal success 
scenarios  



rigorous model validation and engineering design 

 •  … 
–  … 

•  … 
–  … 

•  … 
–  … 

We can test how measurements of new 
information (by adding a new constraint on the 
inputs or outputs) alters the probability of 
failure. 

We perform a design of “experiments” to discover an information set 
that can certify the system as “safe” (not failing within the given tolerance) 



worst-case bounds on probability of failure 

 

 

OUQ bounds are calculated with a 
mean constraint on δ, a mean 
constraint and a variance constraint 
on δ, a mean constraint on z, and a 
mean constraint on δ and a mean 
constraint on z.  
 
The effect of having different 
information constraints can be seen 
on the calculated bounds. More 
specifically, the presence of 
additional information can be seen 
to generally tighten the bounds.  

•  … 
–  … 

•  … 
–  … 
–  … 

Probability that the shock wave reaches steady state 
at x% of the mean distance z  

OUQ bounds detect rare events.  Compare to bounds 
calculated with Monte Carlo sampling (100000 points) 



outlook and opportunities 

 

 

 
 

•  simpler interface for mystic in machine learning 
•  new high-level optimization workflows and strategies 
•  new auto-dimensional reduction conditions 
•  new interpolation strategies and constraints/transforms 
•  improving speed through multi-grid solvers 

•  new releases of mystic is available at: 
–  https://github.com/uqfoundation 

 

•  documentation and tutorials: 
–  http://mystic.readthedocs.io 
–  https://github.com/mmckerns/tutmom 

•  I invite any contributors and collaborators: 
–  contact me at: mmckerns@uqfoundation.org 



 End Presentation 


