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motivation: automated design of materials

« what is the molecular structure that best
produces the desired materials properties?

— can we optimize the probability that a structure
will produce the desired properties within some
tolerance?

« what is the optimal reaction path between

two molecular configurations?

— can we optimize the probability that a transition
will occur between the initial and final states?
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e can we address these questions directly?

— can we formulate a quantity of interest (QOI) as a
“goodness” metric, where we can use any and all Ex\ValEx

information to constrain an automated search
that considers only the space of viable solutions?



typical problem: model of impact plasticity
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A 1100-0 aluminum cylinder is impacted axially against a rigid wall at velocity of

300m/s. [D.E. Grady and M.E. Kipp, 1993]

The cylinder is discretized by material points, each material point represents a
hollow sphere discretized by finite elements (FE ). J2 Isotropic plasticity model
with rate-dependent power law hardening and thermal softening, equation of
state in Mie-Gruneisen type is used for the subscale hollow sphere model.

Axial section of the end
part of an aluminum alloy
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optimization can be very very expensive PsaRP K
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the need for optimizer-based parallelism

cluster-scale objective functions require:
large-scale parallel and distributed computing

asynchronous execution

monitoring, caching, archiving, and job restarts

dynamic decision making
efficient batch execution of the model

optimizers, however, tend to be:

notoriously serial (iterative process)
(synchronously) bound to a model
diagnostic-limited and stateless

of fixed execution strategy

efficient in solver algorithmic speed

...the opposite of what is required!

Taylor test, porous Aluminum (FE?)

# the function to be minimized
# and initial values

import taylor as my model

X0 = [0.8, 1.2, 0.7]

# obtain the solution
import diffev as solver
solution = solver(my model, x0)

optimization tends to be blocking
until a solution is found




parallel graph execution and statefulness
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PATHOS
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a framework for parallel graph
management and execution
in heterogeneous computing

A

# the function to be minimized and the bounds
from mystic.models import rosen as my model
lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

# get monitor and termination condition objects
from mystic.monitors import LoggingMonitor

stepmon = LoggingMonitor(1l, 'log.txt')

from mystic.termination import ChangeOverGeneration
COG = ChangeOverGeneration()

# select the parallel launch configuration
from pyina.launchers import TorqueMpi
my map = TorqueMpi('25:ppn=8"').map

# instantiate and configure the nested solver
from mystic.solvers import PowellDirectionalSolver

my solver = PowellDirectionalSolver(len(lb))
my solver.SetStrictRanges(1lb, ub)

my solver.SetEvaluationLimits(1000)

# instantiate and configure the outer solver
from mystic.solvers import BuckshotSolver

solver = BuckshotSolver(len(lb), 200) I~

solver.SetRandomInitialPoints(1lb, ub)
solver.SetGenerationMonitor (stepmon)
solver.SetNestedSolver (my_ solver)

solver.SetSolverMap(my map) —

solver.Solve(my model, COG)
# obtain the solution

solution = solver.bestSolution ~

available launchers:
— multiprocess, threaded

— MPI parallel
— RPC/IPC (distributed)
— SSH

available schedulers:

— torque, slurm, Isf

hierarchical maps can be
built with a coupling
strategy

local memory cache

automated state

saving and sharing
central archive .
cache-to-archive
interaction

caching to memory,
hdf, file, directory,
database



massively-parallel ensemble optimizers
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ensemble global search and interpolation

L L L i f
=20 =15 =10 -5 n 5 n 15

4

0 -20

dude@hilbert>$ python global_search.py
Cachelnfo(hit=17, miss=8, load=0, maxsize=None, size=8)
Cachelnfo(hit=24, miss=1, load=0, maxsize=None, size=9)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=9)
Cachelnfo(hit=25, miss=0, load=0, maxsize=None, size=9)
min: -70.8861291838 (count=1)

pts: 9 (values=8, size=9)

Single Buckshot Powell
search for all minima

interpolated surfaces due
to search for extrema
and/or critical points

Two-iteration Buckshot
Powell search for all minima.

Interpolate points to build a
surrogate.

“cache” in this case is an abstraction
on storage. “load” is local memory
cache, while “hit” is an archive hit.
“miss” is a new point. Results shown
are for when configured for direct
connectivity with archival database.




scalable: dynamic asynchronous execution

# the function to be minimized and initial wvalues
import taylor as my model
x0 = [0.8, 1.2, 0.7]

# get monitor and termination condition objects
from mystic.monitors import VerboseMonitor
stepmon = VerboseMonitor(5)

from mystic.termination import ChangeOverGeneration

terminate = ChangeOverGeneration()

# instantiate and configure the solver

from mystic.solvers import DifferentialEvolutionSolver

solver = DifferentialEvolutionSolver(len(x0))
solver.SetSaveFrequency (100, 'solver.pkl')
solver.SetInitialPoints(x0)
solver.SetGenerationMonitor (stepmon)
solver.SetObjective(my model)
solver.SetTermination(terminate)
solver.Solve()

# obtain the solution
solution = solver.bestSolution

* plug-and-play components:
— monitoring, logging, caching
— population generators, parallelism
— penalties, constraints, stop conditions

termination
conditions

vy
[ population generator J

an optimizer is composed
of a population generator
and termination conditions,
acting on a cost function

a cost function provides
a difference metric
- E=|F(x)- G|

an optimizer has state

# obtain diagnostic information
function_evals = solver.evaluations
iterations = solver.generations
cost = solver.bestEnergy

# modify the solver configuration; restart
from mystic.termination import VTR, Or

COG = ChangeOverGeneration(tolerance=1le-8)
solver.SetTermination(Or (VTR(),COG))
solver.Step()

solver.Step()

# obtain the current best solution
solution = solver.bestSolution



transforms: simplify and reduce search space

* box (range) constraints
 nonlinear (functional) constraints o Co”ap&m Q‘wtforconvemence Rate
* uniqueness and set-membership constraints
« probabilistic and statistical constraints

.......... dnnenmonalco“apse
enables greater accura :y

 constraints imposing sampling statistics P SR —

. . C L . g \Lz :
* inputs from sampling distributions T ‘m_‘ﬁﬁ ...............
- constraints from legacy data (points and data sets) .| i il o S e
- constraints from models and distance metrics [ il s SRS
« constraints on (product) measures e ]

iteration number, n

« support vector (weight, independence) collapse

>>> from mystic.constraints import unique, discrete, integers, with_mean, and_, not_
>>> from mystic.math.measures import mean

>>> ¢ = and_(unique, discrete(range(10,100,3))(lambda x: x), with_mean(50)(lambda x:x))
>>> ¢([6,33,14,33,511)

[89.0, 44.0, 50.0, 32.0, 35.01]

>>> mean(_)

50.0

>>> ¢ = and_(integers()(lambda x:x), not_(lambda x:[@]xlen(x)), with_mean(@)(lambda x:x))
>>> c([6,3,-1,-3,51])

[4, 1, -3, -5, 3]

>>> mean(_)

0.0 constraints may be solved by nested optimizations

i
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penalties and constrained optimization &
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Traditional constraints methods

from mystic.math.measures import mean, spread apply a penalty to the cost
from mystic.constraints import with penalty, with mean when the constraints are
from mystic.constraints import quadratic equality violated

# build a penalty function

@with penalty(quadratic_equality, kwds={'target':5.0}) éif
def penalty(x, target):
return mean(x) - target o . 7 =3 f —p /“\\\////’
M) — , A~ . penalty
C)(l) f(f[') T A ])(I) functions

# define an objective
def cost(x):

return abs(sum(x) - 5.0)
box
# solve using a penalty _ . constraints
from mystic.solvers import fmin Decoupling constraints often [
x = array([1,2,3,4,5]) pro_du.ces.a convex
y = fmin(cost, x, penalty=penalty) optimization for the QOI

0(@) = £(c(@)

# build a kernel transformation

@with mean(5.0) strongly reduce search space .
: . data point
def constraint(x): / R & functional
return x |\I’ > = c|\I/ > unctiona
constraints
# solve using constraints spawned in parallel

y = fmin(cost, x, constraints=constraint)



example: global MIP with symbolic constraints

def objective(x): Optimization terminated successfully.
return 0.0 Current function value: 0.000000
Iterations: 88
bounds = [(0,10)1*7 Function evaluations: 3560
# constraints [ 6. 0. 8. 4. 9. 3. 09.]
equations = """

98527*x0 + 34588*x1 + 5872%*x2 + 59422*x4 + 65159*x6 - 1547604 - 30704*x3 - 29649*x5 == 0.0
98957*x1 + 83634*x2 + 69966*x3 + 62038*x4 + 37164*x5 + 85413*x6 - 1823553 - 93989*x0 == 0.0

900032 + 10949*x0 + 77761*x1 + 67052*x4 - 80197*x2 - 61944*x3 - 92964*x5 - 44550*x6 == 0.0
73947*x0 + 84391*x2 + 81310*x4 - 1164380 - 96253*x1 - 44247*x3 - 70582*x5 - 33054*x6 == 0.0
13057*x2 + 42253*x3 + 77527*x4 + 96552*x6 - 1185471 - 60152*x0 - 21103*x1 - 97932*x5 == 0.0
1394152 + 66920*%x0 + 55679*%x3 - 64234*x]1 - 65337*x2 - 45581*x4 - 67707*x5 - 98038*x6 == 0.0
68550*x0 + 27886*x1 + 31716*x2 + 73597*x3 + 38835*x6 - 279091 - 88963*x4 - 76391*x5 == 0.0
76132*x1 + 71860*x2 + 22770*x3 + 68211*x4 + 78587*x5 - 480923 - 48224*x0 - 82817*x6 == 0.0
519878 + 94198*x1 + 87234*x2 + 37498%*x3 - 71583*x0 - 25728*x4 - 25495*x5 - 70023*x6 == 0.0
361921 + 78693*x0 + 38592*x4 + 38478*x5 - 94129*x1 - 43188*x2 - 82528*x3 - 69025*x6 == 0.0

nmnmnn

from mystic.symbolic import generate penalty, generate conditions
pf = generate penalty(generate conditions(equations))

from numpy import round as npround

if name == ' main_ ':

from mystic.solvers import diffev2

result = diffev2(objective, x0=bounds, bounds=bounds, penalty=pf,
constraints=npround, npop=40, gtol=50, disp=True, full output=True)



over-fitting can be avoided with better tools

over-fitting is a
consequence of having
missing information that
fails to inform the .
optimizer

o = N W & U o

deg =1, MSE = 0.1701

-1.0 -0.5 0.0 0.5 1.0 15 2.0

can come from:

X

deg = 10, MSE = 0.0337

2.5

— missing or approximate

— abstract convergence

constraining information =3

criteria (scoring function)
— poor objective function

no over-fitting if:

.0 -05 0.0 0.5 1.0 15 2.0
X

2.5

deg = 2, MSE = 0.0614

o = N W & U o

-1.0 -0.5 0.0 0.5 1.0 15 2.0
X

deg = 15, MSE = 0.0102

o = N W & U o

-1.0 -0.5 0.0 0.5 1.0 15 2.0
X

— all constraining information is explicitly applied (by kernel transformation)

— objective and scoring function are the QOI and our actual quality metric



UQ objectives: “how good is my model?”

~CO T 4w

curve curve model error (for the entire curve)

d((t S o)) (@), (t = V' () (. A))

we want to estimate we can compute
R / model error (for a scalar QOI)
M‘:\! ﬁ U
vat _ﬁ /W«\ pt

Ul () = Vi (2, )]

We don’t know the exact microstructure
S\, Shock Simulation

ol )

Shock Experiment and chemical composition, these are
’L«’Hd—% || — ‘ > Uﬁel stochastic in nature
Geometric features have some degree of randomness We have incomplete information on the distribution

) ) ) o . of microstructure and chemical composition
We have incomplete information on the distribution of x

We know v, h,r only up to some tolerance
h € [Amin, hmax), E[h] = m, Var(h) < o

Volume fractions of iron, carbon, .

Average grain orientation and size,correlation between
grain orientations as a function of distance, ...

model uncertainty
statistical error P[‘UHel(aZ) — Vg (T, )\)‘ > a}

2
L UUHel(x) — Vel (2, )] } likelihood of failure

IP’“@Hel(a:) — Vo (T, )\)| > a]g €



needle in an infinite-dimensional haystack ' A
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optimal bound on . 2
the statistical error >UPucA o ‘UHel(x) UHel(x’ )‘)‘

the optimal model is obtained by minimizing
the optimal bound on the statistical error

. 2
lnfv{{  SUP e A E,Lb UUHel(CC) o Ui—lel(a;’ )\)‘ ]

optimal design requires nested infinite-dimensional optimizations

« min/max nested optimizations of all possible outcomes over
all possible models of the material
— coordinate space provides a huge combinatorial problem
— with an optimization over all possible outcomes of the above

* interms of all possible states, the configurations that provide
the desired properties are usually quite rare



how to solve it? simplify, simplify, simplify ' A
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—optimal bound on / Y

the statistical error S H e y

the optimal model is obtained by minimizing

—the optimrat-botird-on the statistical error

inf“f{el SU-PFGA/IYEM UUHel(x) o Uﬁel(x7 )\) ‘2]

« select thg “most likely” distribution
— collapse\optimization to the sub-manifold of coordinate space

» select the form of the model
— collapse to a single parameterized model or class of models

 solve a difficult finite-dimensional machine learning problem
 then typically use monte-carlo estimation to obtain bounds



OUQ: a robust uncertainty theory

(g: X > R, u e P(X)) is consistent with
A:= < (g,p)| all given information about the real system (G, P)
(e.g. legacy data, first principles, expert judgement)

@ Optimal bounds on the quantity of interest Ex.p[q(X, G(X))]
(optimal w.r.t. the information encoded in A) are found by

minimizing/maximizing Ex~.,.[q(X, g(X))] over all admissible
scenarios (g, i) € A:

L(A) <Ex~plg(X,G(X))] SU(A),

where £(A) and U(.A) are defined by the minimization and
maximization problems

extremes are bound ,C A = 1nf E ~ - X X .,
form of constaints A= iea X nldl X 9(X)
formulated to handle Z/{(A) .— sup EXN;L Q(X/ g(X)) .

UQ for catastrophic
rare-events (g,u) €A



OUQ reduces infinite to finite dimensional '

\

optimal bound on . 2
the statistical error >UPucA o ‘UHel(x) UHel(x’ A)‘

ex(A) OouQ problems reduce to searches over finite

dimensional families of extremal scenarios of 4

The dimension of the reduced problem is
proportional to the number of probabilistic
inequalities that describe 4

« optimization is over product measures
— does not require selection of a probability distribution
— imposes constraining information on the possible distributions

« valid only when solving for extrema
— this is what we want when solving for worst-case bounds
— much cheaper and more rigorous than monte carlo sampling



UQ with unknown probability distributions

* min/max on probability measure
space (not input parameter space)

W' > =2 >=) wlz; >
7

v >
/M
Wwi,Z1 W2, T2
_ 0O O

* mean-constrained optimization
balances weights and positions of
Dirac masses around a critical point

how many points are required? N+1 or less,
where N is the number or constraints.

OUQ is an optimization problem to
find the rigorous bounds on system
behavior

all information is captured as constraints

constraints restrict the set of all possible
solutions (by directly constraining solution
space)

systems with minimal to no experimental
data or unobserved rare events that govern
system behavior

instead of selecting a "best" model or
distribution or prior, we can optimize
over all possible models,
distributions, or priors.

selecting a model or distribution is treated
as an assumption or information (i.e. a
constraint)

our "prior" step becomes one of quantifying
all the knowledge we have about the
problem, and then encoding that
knowledge as constraints




initial representation of probability distribution...
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..solver looks for extremal cases... R
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..collapses candidate scenarios... =
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..Solves for extrema in probability of failure 2
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rigorous model validation and engineering design

def constraints(rv): ( g =model : p € [1b,ub] — R,
¢ = product_measure().load(rv, npts) p= 37 o wib;,
# impose norm on each discrete measure A= 4 (9,1) E:iﬂuhz=0
for measure in c: E,lg] = zmean,
if not almostEqual (float(measure.mass), 1.0): \ p = d.mean J

measure.normalize()
# impose expectation value and other constraints on product measure
E = float(c.expect(model))
if E > (target[0] + error[0]) or E < (target[0] - error[0]):
c.set_expect ((target [0] ,error[0]), model, (x_lb,x_ub), _constraints)
return c.flatten() # extract parameter vector of weights and positions

def _constraints(c):
E = float(c[0] .mean)
if E > (target[1] + error[1]) or E < (target[l] - error[1]):
c[0] .mean = target[1]
return c

We can test how measurements of new
information (by adding a new constraint on the
inputs or outputs) alters the probability of
failure.

def objective(rv):

¢ = product_measure().load(rv, npts)
return MINMAX * c.pof(failure)

We perform a design of “experiments” to discover an information set
that can certify the system as “safe” (not failing within the given tolerance)




worst-case bounds on probability of failure

For a viscous Burgers’ equation: OUQ bounds detect rare events. Compare to bounds
calculated with Monte Carlo sampling (100000 points)

Ut + Uy — VUgy = 0

with z € [—1,1] and viscosity v > 0, we have: Lo
u(-1)=1+0
u(l) = —1 087

where 0 > 0 is a perturbation to the left boundary condition.
0.6 -

OUQ bounds are calculated with a
mean constraint on 6, a mean 0.4 -
constraint and a variance constraint
on 0, a mean constraint on z, and a
mean constraint on 6 and a mean 0.2
constraint on z.

Monte Carlo SO SsoSa
meanonz ENA TN
meanonb SS

meanoné, varoné
meanonb, meanonz
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0.0 T T T T T 1 1
The effect of having different 100 102 104 106 108 110 112 114

information constraints can be seen
on the calculated bounds. More

specifically, the presence of P(z > 22) at § ~ U(0,0.1)
additional information can be seen 100 ’ :

to generally tighten the bounds.

Monte Carlo estimate for probability of success

Probability that the shock wave reaches steady state
at x% of the mean distance z




outlook and opportunities

« simpler interface for mystic in machine learning

* new high-level optimization workflows and strategies

* new auto-dimensional reduction conditions

* new interpolation strategies and constraints/transforms
* improving speed through multi-grid solvers

* new releases of mystic is available at:
— https://github.com/ugfoundation

« documentation and tutorials:
— http://mystic.readthedocs.io
— https://github.com/mmckerns/tutmom

* | invite any contributors and collaborators:
— contact me at: mmckerns@ugfoundation.org



End Presentation



