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Abstract

Additionally to the widely used Finite volume and continuous Galerkin
methods, discontinuous Galerkin methods provide a set of tools to nu-
merically solve partial differential equations. In advantage to finite vol-
ume methods they offer higher-order accuracy. Compared to continuous
Galerkin methods mass and stiffness matrices can be kept small, due to
their local definition, where single elements only communicate with their
direct neighbors. A common way to solve the time integrator of dis-
continuous Galerkin methods is to use Runge-Kutta solvers for ordinary
differential equations. The order of convergence of these solvers is bound
through the Butcher barrier, making a higher order convergence hardly
realizable. To allow higher orders of convergence an alternative approach
has been proposed, translating the principle of using the weak form of
a partial differential equation, from the space dimension to the time di-
mension additionally. The resulting discontinuous Galerkin time predictor
schema is similar to the semi discrete discontinuous Galerkin schema and
provides a new set of mass, stiffness and flux matrices. In this thesis I will
give an introduction to the ADER approach and compare it to the well
known finite volume and the discontinuous Galerkin methods with Runge-
Kutta time stepping and discuss the sparsity patterns of the matrices of
these methods.
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1 Introduction

The main topic of this thesis is solving hyperbolic partial differential equations
through discontinuous Galerkin methods. The importance of partial differential
equations in physics and other sciences is undeniable. In fluid mechanics, for
example, the well known Navier-Stokes equations model the stream of Newto-
nian fluids and gases. Finding an explicit solution to these equations has been
declared one of the most essential tasks for current mathematics.

For equations where the solution is not known, there’s the need to solve
them numerically instead.

The widely known finite volume methods [6] are a reliable way to approxi-
mate the solutions. By dividing the domain of the problem in distinct subdo-
mains and approximating the average of the solution over this subdomains, the
numeric solution mostly converges to the real solution (In fact the theorem of
Lax and Wendroff states that the method always converges to a weak solution,
which we will introduce in this thesis). A disadvantage of finite volume methods
is that they only converge linearly to the solution.

To find methods that converge in higher order is the motivation of continuous
and discontinuous Galerkin finite element methods, as introduced in [5] and [10].

After a general introduction to hyperbolic partial differential equations in
section 2, we will develop the theory behind discontinuous Galerkin methods in
section 3. The resulting time integral will be solved by Runge-Kutta methods.

As these methods are naturally bound to the Butcher barrier, which makes
orders of convergence higher than 4 expensive to realize, we will regard an
alternative approach, the ADER time prediction, proposed in [3], in chapter 4.

The ADER time prediction, develops a less expensive way to reach high
orders of convergence than the Runge-Kutta methods.

While we acquire these theories we will encounter the known numeric prob-
lem of polynomial interpolation for the choice of nodal basis functions, which
will be discussed in chapter 5.

As we additionally wish to implement the methods on high performance at
state-of-the-art hardware, the sparsity patterns of the underlying mass, stiffness
and flux matrices are analyzed in chapter 5.

In the final chapter 6 an analysis of the assumptions we made on the conver-
gence order is performed by running an error analysis for the different methods.
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2 Hyperbolic partial differential equations

In this thesis we discuss two related numerical methods seeking for a approxi-
mate solution to hyperbolic partial differential equations.

A general definition of a non-linear partial differential equation in N space
dimensions of first order is given by,

∂

∂t
q(~x, t) +

N∑
i=1

∂

∂xi
fi(q) = S(q), (1)

defined on a domain Ω ∈ Rn with boundary δΩ. ~x denotes the vector of all
variables in space xi, t is the variable in time. The solution q, the flux-terms
fi as well as the source term S are M dimensional vectors, i.e. the number of
physical quantities.

To obtain a general overview of partial differential equations (PDEs), we will
take a look at two different examples. At first the advection equation, which
states a very simple problem and second the Shallow-Water equations which are
hyperbolic non-linear differential equations and allow the calculation of explicit
solutions.

The advection equation states an linear scalar PDE which is denoted by

∂

∂t
q +

∂

∂x
(uq) = 0, (2)

where u ∈ R is called the wave-speed and q : I × R+ → R for some interval
I = [a, b] ⊂ R.

To observe a PDE we take a look at the characteristic curves of the equation,
which are generally defined in one dimension by

X ′(t) = f ′(X(t), t), (3)

with f ′ being the derivative of the flux.
Along characteristic curves the solution is equal to the source term

∂

∂t
q (X(t), t) = X ′(t)

∂

∂x
q +

∂

∂t
q = S, (4)

thus for S = 0, the solution is constant along the characteristics in time.
By looking at the characteristic functions we have a view on how the solution

will evolve in time.
For the problem described in equation (2) we obtain

X ′(t) = u⇒ X(t) = t · u+ c, (5)

with c ∈ I.
As we see, the solution stays constant along lines in time.
With a initial condition at time zero q(x, 0) = q̊(x), assuming periodic

boundaries i.e q(a, t) = q(b, t) and assuming a positive wave speed u > 0, we
can describe the solution recursively by

q(x, t) =

{
q (b, t− (x− a)/u) , for t · u > x

q̊ (x− (t · u)) , for t · u < x
(6)
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In figure 1 is a plot of a Gaussian normal distribution propagating at u = 0.05
with periodic boundaries. Due to it’s continuity we will use this solution in the
convergence analysis in chapter 6.
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Figure 1: Explicit solution to the partial differential equation (2) with a Gaus-
sian normal distribution as initial distribution

As second set of partial differential equations we’re looking at the Shallow
Water equations. An introduction to the physical background is given in [6, p.
253–259].

The equations are given by the term

∂

∂t
q(x, t) +

∂

∂x
f(q) = 0, (7)

with

q(x, t) =

(
q1

q2

)
, and f(q) =

(
q2

q22
q1

+ 1
2g · q

2
1

)
, (8)

where g is the gravitational constant and q1 ≥ 0.
By looking at the Jacobian matrix of the flux term we can observe two

properties of the PDE:

f ′(q) =

(
0 1

−
(
q2
q1

)
+ gq1 2 q2q1

)
. (9)

As the derived flux-term still depends on q the PDE is called non-linear.
PDEs where the derived flux term is diagonalizable with distinct real eigenvalues
are called hyperbolic.
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Figure 2: Solution to the dam break problem for the initial values ql = 1 and
qr = 0.5

For the derived flux in equation (9) the eigenvalues are

λ1 =
q2

q1
−√gq1

λ2 =
q2

q1
+
√
gq1

(10)

By defining the initial conditions

q1 =

{
ql x ≤ 0

qr x > 0

q2 = 0,

(11)

with ql > qr we state the dam-break problem. A PDE together with piecewise
constant initial conditions as in equation (11) are called Riemann problems.

How one can obtain the solution to a Riemann problem for nonlinear hyper-
bolic PDE is explained in detail in [6, p. 263–290].

q1 of the solution for explicit values for ql and qr, as evaluated in [6, p. 279]
is plotted in figure 2. In this example solution we can see a few characteristic
properties of Riemann problems for hyperbolic non-linear equations:

• The solution is always constant along rays x
t .

• For x
t < λ1(ql) the solution remains in the initial value ql and behaves

equivalently with x
t > λ2(qr) and qr.
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• Along the ray x
t = λ2(qr) we obtain a discontinuity, called shock wave.

• A new intermediate constant state qm evolves between λ1(qm) and λ2(qr).

• Between λ1(ql) and λ1(qm) we see a rarefaction wave propagating in time.

In fact, there’s a third type of wave, the contact discontinuity described in [6, p.
301]. Solutions to Riemann problems for hyperbolic non-linear equations with
M eigenvalues have M waves of one of the tree types. The key to the solution
itself is the calculation of the state qm which has to fulfill certain equations
when lying between the rarefaction and the shock wave.
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3 The Discontinuous Galerkin method

To obtain a general formulation of the discontinuous Galerkin method we ex-
amine the general non-linear partial differential equation (1) of first order of
chapter 2,

∂

∂t
q(x, t) +

N∑
i=1

∂

∂xi
fi(q) = S(q). (12)

The discontinuous Galerkin method seeks for a solution piecewise defined on
a disjunct set of subdomains Ω(e) of Ω,

Ω =
⋃

e∈{1,..,m}

Ω(e). (13)

The choice of how the domain is divided is arbitrary, for example an often
used method in three space dimensions is the division by tetrahedrons as ex-
plained in [5, p. 409–418]. For reasons of simplicity in this thesis we will define
the local subdomains as N dimensional rectangles,

Ω(e) =
⊗

d∈{1,...,N}

[a
(e)
d , b

(e)
d ], with a

(e)
d , b

(e)
d ∈ R. (14)

The global solution q is then the direct sum of the local solutions q(e) defined
on Ω(e),

q(~x, t) =
⊕

e∈{1,..,m}

q(e)(~x, t). (15)

For a locally defined solution q(e) the differential equation (12) still holds.
The general approach in finite element methods, as defined in [10, p. 40], is

to introduce the weak integral form of the partial differential equation on the
elements,

∫
Ω(e)

φj

(
∂

∂t
q(e) +

N∑
i=1

∂

∂xi
fi

(
q(e)
)
− S

(
q(e)
))

dΩ(e) = 0, ∀j = 1 . . . Nφ,

(16)
for a set of Nφ test functions φj .

By using the divergence theorem on the flux summands of equation (16), we
obtain ∫

Ω(e)

φj
∂

∂xi
fi

(
q(e)
)
dΩ(e) =∫

δΩ(e)

φjfi

(
q(−,+)

)−→n dδΩ(e) −
∫

Ω(e)

∂

∂xi
φjfi

(
q(e)
)
dΩ(e) =

N∑
k=1

∫
Ω

(e)
k

[
φjfi

(
q(−,+)

)−→n ]xk=bk

xk=ak
dΩ

(e)
k −

∫
Ω(e)

∂

∂xi
φjfi

(
q(e)
)
dΩ(e),

(17)

with −→n being the normal vector pointing outside δΩ(e), and Ω
(e)
k being the

N − 1 dimensional face at a position xk in the space dimension k. For example,

in three dimensions we receive for Ω
(e)
3 a rectangle spanned in the first and
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second dimension. As the solution q is only defined element wise, we don’t
know the explicit function on the boundary yet. We will denote this function
by q(−,+) for now, and solve the problem later on.

Equation (16) becomes: ∫
Ω(e)

φj

(
∂

∂t
q(e)

)
dΩ(e)

+

N∑
i=1

(
N∑
k=1

∫
Ω

(e)
k

[
φjfi

(
q(−,+)

)−→n ]xk=bk

xk=ak
dΩ

(e)
k −

∫
Ω(e)

∂

∂xi
φjfi

(
q(e)
)
dΩ(e)

)

−
∫

Ω(e)

φjS
(
q(e)
)
dΩ(e) = 0, ∀j = 1 . . . Nφ

(18)

The local solutions q(e) are now approximated in space by a set of basis

functions ψ
(e)
i with their coefficients q̂

(e)
i , called degrees of freedom (DOFs),

q(e)(~x, t) ≈ q(e)
h (~x, t) =

Np∑
i=1

ψ
(e)
i (~x)q̂

(e)
i (t). (19)

The choice of this basis functions and the corresponding evaluation of the
degrees of freedom is discussed in chapter 5. In this thesis we will use a nodal
basis, which allows an simple calculation of the flux and source terms.

To keep the notation short we will denote the approximation in vector-vector
notation:

q
(e)
h = ~ψ

(e)T
· ~q(e), (20)

with

~ψ
(e)

=


ψ

(e)
1

ψ
(e)
2

. . .

ψ
(e)
Np

 ~q(e) =


q̂

(e)
1

q̂
(e)
2

. . .

q̂
(e)
Np

 . (21)

Due to the nodal basis the approximation of the flux and source terms in
equation (18) can be transformed in vector-vector notation too:

fi(~ψ
(e)T
· ~q(e)) ≈ ~ψ

(e)T
·~f (e)
i S(~ψ

(e)T
· ~q(e)) ≈ ~ψ

(e)T
· ~S(e), (22)

with

~f
(e)
i =

fi(q̂
(e)
1 )
· · ·

fi(q̂
(e)
Np

)

 ~S(e) =

S(q̂
(e)
1 )
· · ·

S(q̂
(e)
Np

)

 . (23)

Equation (18) with the vector-vector notation and the fact that the DOFs
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are space independent yields ∫
Ω(e)

φj · ~ψ
(e)T

dΩ(e) · ∂
∂t
~q(e)

+

N∑
i=1

(
N∑
k=1

∫
Ω

(e)
k

[
φjfi

(
q(−,+)

)−→n ]xk=bk

xk=ak
dΩ

(e)
k −

∫
Ω(e)

∂

∂xi
φj · ~ψ

(e)T
dΩ(e) ·~f (e)

i

)

−
∫

Ω(e)

φj · ~ψ
(e)T

dΩ(e) · ~S(e) = 0,

∀j = 1 . . . Nφ
(24)

By using the transformation theorem, and mapping the integrals of equation
(24) on a reference element ζ = [0, 1]

N
, we can simplify the calculation.

A mapping from any integration domain Ω(e) =
⊗

d∈{1,...,N}[ad, bd] to the
reference element is given by

Φ(e)(~x) = A(e)(~x− ~a(e)) (25)

With

A(e) =


(b1 − a1)(−1) 0 . . . 0

0 (b2 − a2)(−1) . . . 0
...

...
. . .

...
0 0 . . . (bN − aN )(−1)

 ~a(e) =

a1

...
aN


(26)

The transformation constant is then defined as∣∣∣detDxΦ(e)
∣∣∣ =

∣∣∣detA(e)
∣∣∣ =

∏
i∈{1,...N}

(bi − ai)−1 =: T (e) (27)

In discontinuous Galerkin methods the set of basis functions are used as test
functions, i.e. φj = ψj . As equation (24) has to hold for all j ∈ {1, . . . , Np} we
can define the mass and stiffness matrices in (28) and directly transform them
on the reference element.

1

T (e)
·M :=

1

T (e)
·
∫
ζ

ψ · ψT dζ =

∫
Ω(e)

ψ(e) · ψ(e)T dΩ(e)

Di :=

∫
ζ

ψ · ∂

∂xi
ψT dζ =

1

T (e)

∫
ζ

ψ · ∂

∂xi
ψT · T (e) dζ

=

∫
Ω(e)

ψ(e) · ∂

∂xi
ψ(e)T dΩ(e)

(28)

Note that the basis functions now only have to be defined on the reference
element.

The unknown function q(−,+) along a face Ωk with xk = b is the solution to
a generalized Riemann problem as defined in [7, p. 625–644]. The problem is
stated by the PDE (12) and the initial condition:

q(−,+)(~x) =

{
q(−) , for xk < b

q(+) , for xk > b
(29)
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In fact the naming discontinuous Galerkin is deviated from the disconuities
we’re obtaining along the boundaries.

fi(q
(−,+)), the flux along the solution of the generalized Riemann problem, is

approximated by a numerical flux. We will use the local Lax-Friedrichs method,
which is also called Rusanov’s method [6, p. 232–234].

The flux between two elements, here denoted by (−) and (+), is defined by

fi(q
(−,+)) ≈ f (−,+)

i =

1

2

(
~ψ

(−)T~f
(−)

i + ~ψ
(+)T~f

(+)

i − ~n|smax|
(
~ψ

(+)T
~q(+) − ~ψ

(−)T
~q(−)

))
=

1

2

(
~ψ

(−)T
(
~f

(−)

i + ~n |smax|~q(−)

))
+

1

2

(
~ψ

(+)T
(
~f

(+)

i − ~n |smax|~q(+)

)) (30)

where |smax| is the maximum wave speed of the solution to the general Riemann
problem as mentioned in chapter 2.

For the boundary integral of equation (24), with Ω(l) being the left neigh-
bour, i.e −→n = −1, and Ω(r) the right neighbour, i.e −→n = 1, of element Ω(e) in
direction k we obtain

∫
Ω

(e)
k

[
φjfi

(
q(−,+)

)−→n ]xk=bk

xk=ak
dΩ

(e)
k

≈ 1

2

∫
Ω

(e)
k

ψ
(e)
j |xk=b

(e)
k

· ~ψ
(r)T
|
xk=a

(r)
k

dΩ
(e)
k

(
~f

(r)

i + |smax|~q(r)

)
+

1

2

∫
Ω

(e)
k

ψ
(e)
j |xk=b

(e)
k

· ~ψ
(e)T
|
xk=b

(e)
k

dΩ
(e)
k

(
~f

(e)

i − |smax|~q(e)

)
−1

2

∫
Ω

(e)
k

ψ
(e)
j |xk=a

(e)
k

· ~ψ
(e)T
|
xk=a

(e)
k

dΩ
(e)
k

(
~f

(e)

i − |smax|~q(e)

)
−1

2

∫
Ω

(e)
k

ψ
(e)
j |xk=a

(e)
k

· ~ψ
(l)T
|
xk=b

(l)
k

dΩ
(e)
k

(
~f

(l)

i + |smax|~q(l)

)
(31)

Like the definitions in equation (28), we can transform the integrals on the
reference element again. For the integrals with no contribution of face neigh-
bours we receive:

1

T
(e)
k

· F+
k :=

1

2 · T (e)
k

∫
ζk

~ψ|xk=1 · ~ψ
T
|xk=1dζk

=
1

2

∫
Ω

(e)
k

~ψ
(e)
|
xk=b

(e)
k

· ~ψ
(e),T
|
xk=b

(e)
k

dΩ
(e)
k

1

T
(e)
k

· F−k :=
1

2 · T (e)
k

∫
ζk

~ψ|xk=0 · ~ψ
T
|xk=0dζk

=
1

2

∫
Ω

(e)
k

~ψ
(e)
|
xk=a

(e)
k

· ~ψ
(e)T
|
xk=a

(e)
k

dΩ
(e)
k .

(32)
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For the integrals with contribution of the face neighbours:

1

T
(e)
k

· F−,+k :=
1

2 · T (e)
k

∫
ζk

~ψ|xk=1 · ~ψ
T
|xk=0dζk

=
1

2

∫
Ω

(e)
k

~ψ
(e)
|
xk=b

(e)
k

· ~ψ
(r)T
|
xk=a

(r)
k

dΩ
(e)
k

1

T
(e)
k

· F+,−
k :=

1

2 · T (e)
k

∫
ζk

~ψ|xk=0 · ~ψ
T
|xk=1dζk

=
1

2

∫
Ω

(e)
k

~ψ
(e)
|
xk=a

(e)
k

· ~ψ
(l)T
|
xk=b

(l)
k

dΩ
(e)
k .

(33)

The integrals in equation (24) replaced by the definitions in equation (28),
(32) and (33) yield:

1

T (e)
M

∂

∂t
~q(e)+

+
1

2

N∑
i=1

N∑
k=1

1

T
(e)
k

F−,+k ·
(
~f

(r)

i + |smax|~q(r)

)

+
1

2

N∑
i=1

N∑
k=1

1

T
(e)
k

F+
k ·
(
~f

(e)

i − |smax|~q(e)

)

−1

2

N∑
i=1

N∑
k=1

1

T
(e)
k

F−k ·
(
~f

(e)

i − |smax|~q(e)

)

−1

2

N∑
i=1

N∑
k=1

1

T
(e)
k

F+,−
k ·

(
~f

(l)

i + |smax|~q(l)

)

−
N∑
i=1

Di ·~f (e)
i − 1

T (e)
M~S(e) = 0.

(34)

We obtain, by inverting the mass matrix and putting all terms, except the
q term, on the right side, the ordinary differential equation (ODE):

∂

∂t
~q(e) =

−1

2

N∑
i=1

N∑
k=1

(
b
(e)
k − a

(e)
k

)−1

M−1F−,+k ·
(
~f

(r)

i + |smax|~q(r)

)

−1

2

N∑
i=1

N∑
k=1

(
b
(e)
k − a

(e)
k

)−1

M−1F+
k ·
(
~f

(e)

i − |smax|~q(e)

)

+
1

2

N∑
i=1

N∑
k=1

(
b
(e)
k − a

(e)
k

)−1

M−1F−k ·
(
~f

(e)

i − |smax|~q(e)

)

+
1

2

N∑
i=1

N∑
k=1

(
b
(e)
k − a

(e)
k

)−1

M−1F+,−
k ·

(
~f

(l)

i + |smax|~q(l)

)

+

N∑
i=1

T (e)M−1Di ·~f (e)
i + ~S(e) = 0

(35)

10



This time continuous space discrete scheme is the basis to our further dis-
continuous Galerkin simulations.

It shows two elementary aspects of discontinuous Galerkin methods.

• At first the only communication between elements is between direct face
neighbours. For the a concrete implementation this offers, pending on the
solver of the ODE, a promising opportunity as the process could easily
be split in the two steps of synchronizing the DOFs between the elements
and then calculating the solution to the ODE element wise in parallel.

• The second is the general definition of the local mass stiffness and flux
matrices. In contrast to continuous Galerkin methods, where basis func-
tions are defined globally, matrices can be kept short and are equal in all
elements due to the transformation theorem.

3.1 From discontinuous Galerkin to finite volume method

The finite volume method can be seen as a special case of the discontinuous
Galerkin method.

For the spatial order Np = 1 the matrices of equation (28), (32) and (33)
decompose to

M = 1

D = 0

F+
k = F−k = F+,−

k = F−,+k = 1

(36)

For a PDE in one space dimension, i.e N = 1, we obtain the ODE

∂

∂t
~q(e) = −1

2

1

∆x(e)

(
−f (l,e) + f (e,r)

)
− ~S (37)

with ∆x(e) = b(e) − a(e) being the size of element Ω(e) =
[
a(e), b(e)

]
.

Using the Euler method, with a time step ∆t yields a well known finite
volume scheme, derived in [6, p. 64–66]

~q
(e)
n+1 = ~q(e)

n −
1

2

∆t

∆x(e)

(
f (e,r)
n − f (l,e)

n

)
− ~S(~q(e)

n ) (38)

3.2 Solving the Galerkin scheme with Runge-Kutta meth-
ods

For the ordinary differential equation (35) together with the initial values for
t = 0 defined by q̊(~x) we receive an initial value problem.

We will abbreviate the initial value problem by

∂

∂t
~q = f(~q)

~q0 = q̊(~x)
(39)

with ~q being the vector of the DOFs of all elements, ~x of the corresponding
nodes and f the ODE pending on ~q.
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The common way to solve an initial value problems is by using a Runge-
Kutta method with the desired order of convergence. For example the solver we
used in the previous chapter 3.1, the Euler method, is a Runge-Kutta method
of order one.

A general definition for the Runge-Kutta methods with a more detailed
theoretical explanation can be found here [1, p. 128 –190].

For this thesis it is sufficient to know that the orders of convergence of the
Runge-Kutta methods are bound by the Butcher barrier which makes orders
higher than four expensive due to the increasing number of stages.

In the further implementation we will use the classical Runge-Kutta method,
also called Simpson rule which has an convergence order of four and is defined
as

~qn+1 = ~qn + ∆t

(
1

6
f1 +

1

3
f2 +

1

3
f3 +

1

6
f4

)
f1 = f (~qn)

f2 = f

(
~qn +

1

2
∆t · f1

)
f3 = f

(
~qn +

1

2
∆t · f2

)
f4 = f (~qn + ∆t · f3)

(40)

for the solution ~q between time tn and tn+1 with ∆t = tn+1 − tn and ~qn as the
functions value at time tn.

For the parallelisation, as mentioned before, we now have to synchronize the
DOFs of the solution four times, for every fi, in each iteration step.

12



3.3 Simulation of the dam break Problem

In this chapter we will take a look on a example numeric solution of the dam
break problem as stated in chapter 2 in equation (11).

The observed interval [−2, 2] is divided in 200 elements of equal size ∆x =
0.02. Each element is of order 4, the solution is approximated along 4 nodes.
The time step length is set to ∆t = 5 · 10−6 which fulfills the CFL-condition,
as explained in [6, p. 65 – 71] and [5, p. 97]. For the method to be stable it is
necessary to fulfill this condition.

In figure 3 is the analytic solution at time t = 0.5 compared to the numerical
solution.

As we see the shock wave as well as the rarefaction wave evolved in the
numerical solution. The middle state qm is also apparently right.

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

t

x

rarefaction wave
shock wave

qm
ql
qr

numerical solution

Figure 3: Comparison between the numeric solution and the analytic solution.

Along the shock wave however we observe a well known disadvantageous phe-
nomenon in discontinuous Galerkin methods. The numerical solution oscillates
along the discontinuity as shown in figure 4.
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0.4

0.6

0.8

1.5

t

x

shock wave
qm
qr

numerical solution

Figure 4: Comparison between the numeric solution and the analytic solution
in detail. Along the discontinuity oscillations are visible.

The root to this problem is the polynomial approximation along nodes, an
detailed explanation can be found in [5, p. 136 – 139]

One solution to this problem is the implementation of an limiter, a function
to detect and smoothen oscillations. An example implementation of a limiter is
given in [5, p. 145 – 157].

Due to time restrictions a proper implementation of the example limiter
wasn’t possible.
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4 The ADER-DG method

The ADER-DG method, as proposed in [3], states an new approach in solving
the time integration. The idea behind the method is transforming the discreti-
sation by nodes from the spatial dimension to the time dimension additionally,
to obtain a time-stepping function.

The general time iteration can than be divided in two parts:

• At first, for each element, the local DOFs in space and time are derived
from the local DOFs in space of the initial time-step. These DOFs already
state the prediction in time.

• Second, the prediction in space and time is used in a schema alike the
discontinuous Galerkin schema (35) in section 3, to obtain the DOFs in
space of the following time-step.

4.1 The ADER Time prediction

As in the formulation for discrete Galerkin methods the starting point is a
common partial differential equation as defined in section 2, on a N-dimensional
space:

∂

∂t
q +

N∑
i=1

∂

∂xi
fi = S. (41)

In addition to the in section 3 already defined mapping from to the spatial
reference element ζs = [0, 1]N we introduce a mapping from any time interval
[tn, tn+1] to a time reference element ζt = [0, 1] and combine them to the space-
time reference element ζ = ζs × ζt.

Equivalently to the discontinuous Galerkin formulation we receive, by mul-
tiplying the PDE with test functions Ψj and integrating over the space time
reference element the weak form:∫

ζt

∫
ζs

Ψj

(
∂

∂t
q +

N∑
i=1

∂

∂xi
fi − S

)
dζs dζt = 0. (42)

Integrating Ψj
∂
∂tq by parts over time with ~x = (x1, ..., xN ) yields:∫

ζs

Ψj (~x, 1) q (~x, 1) dζs −
∫
ζs

Ψj (~x, 0) q (~x, 0) dζs−∫
ζs

∫
ζt

∂

∂t
Ψj q dζt dζs +

∫
ζs

∫
ζt

Ψi

(
N∑
i=1

∂

∂xi
fi − S

)
dζt dζs = 0.

(43)

Again we’re approximating q on the nodal basis as defined in chapter 5.
With the Lagrange polynomials ψi on the space-time reference element and the
degrees of freedom q̂i we get the approximation

qh =

Np∑
i=1

ψiq̂i,
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with Np being the number of Lagrange polynomials. Or in vector-vector nota-
tion

~ψ>~q,

with ~ψ as the vector of Lagrange polynomials and ~q of degrees of freedom. In
the same manner we obtain the vectors ~fi and ~S.

We receive by approximating all summands despite the one at time 0:∫
ζs

Ψj (~x, 1) · ~ψ (~x, 1)
>
~q dζs −

∫
ζs

Ψj (~x, 0) · q(~x, 0) dζs−∫
ζs

∫
ζt

∂

∂t
Ψj · ~ψ>~q dζt dζs +

∫
ζs

∫
ζt

Ψj ·

(
N∑
i=1

∂

∂xi
~ψ> ~fi − ~ψ>~S

)
dζt dζs = 0.

(44)
As we’re expecting the initial DOFs at any time tn being only defined in

space, we use the spatial approximation, here denoted by ~ψ
T
~q, for the summand

we left out in the previous formula:∫
ζs

Ψj (~x, 0) · q(~x, 0) dζs ≈
∫
ζs

Ψj(~x, 0) · ~ψ
T

(~x) · ~q(n) dζs. (45)

Hence (44) and (45) have to be valid for all test functions Ψj we receive,
by using the space-time basis functions as test functions and by defining the
matrices

M1 =

∫
ζs

(
~ψ · ~ψ>

)
(~x, 1) dζs

M0 =

∫
ζs

(
~ψ · ~ψ

T
)

(~x, 0) dζs

M =

∫
ζs

∫
ζt

(
~ψ · ~ψ>

)
dζt dζs

Kt =

∫
ζs

∫
ζt

∂

∂t
Ψ · ~ψ> dζt dζs

Ki =

∫
ζs

∫
ζt

ψ · ∂

∂xi
~φ> dζt dζs,

(46)

the matrix-matrix form

M1~q −M0~q(n)−Kt~q +

N∑
i=1

Ki ~fi −M~S = 0. (47)

By rearranging we receive, the non-linear system of equations for the local
degrees of freedom in space in time

~q =
(
M1 −Kt

)−1

(
M0~q(~x, n)−

N∑
i=1

Ki ~fi(q) + M~S(q)

)
. (48)

This system of equations can be solved by the iterative schema:

~qk+1 =
(
M1 −Kt

)−1

(
M0~q(~x, n)−

N∑
i=1

Ki ~fi(qk) + M~S(qk)

)
, (49)
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4.2 Fully discrete space time formulation

To obtain a fully space and time discrete formulation we restart at equation

(43) now using the N
(s)
p space basis functions ~ψ as test functions.

With the set of test functions being time independent (43) becomes∫
ζs

ψj (~x) q (~x, 1) dζs −
∫
ζs

ψj (~x) q (~x, 0) dζs+∫
ζs

∫
ζt

ψj

(
N∑
i=1

∂

∂xi
fi − S

)
dζt dζs = 0.

(50)

As we wish to obtain a stepping function from a set of initial DOFs in
space to the DOFs of a next time-step we approximate q(~x, 1) as well as q(~x, 0),
equivalently to equation (20) in section 3, with degrees of freedom ~q1, ~q0 and

space basis functions ~ψ.
Integrating the flux terms as we did in equation (17) in section 3 by parts

and again approximating them in time and space as in (44) yields:∫
ζs

ψj · ~ψ
>
~q1 dζs −

∫
ζs

ψj · ~ψ
>
~q0 dζs+

N∑
i=1

(∫
ζt

∫
δζs

ψjf
(−,+)
i ~n dδζs dζt −

∫
ζs

∫
ζt

∂

∂xi
ψj · ~ψ> ~fi dζt dζs

)
−∫

ζs

∫
ζt

ψj ~ψ
>~S dζt dζs = 0,

(51)

with f
(−,+)
i being the numeric flux along the boundary δζs.

The Riemann problem along the boundary δζs is again solved by the Lax-
Friedrichs flux as defined in section 3 in equation (30) now using the DOFs in
space-time.

By evolving (51) and defining the matrices equivalently to the ones in section
3 we receive

Ms =

∫
ζs

(
~ψ · ~ψ

>)
dζs

Mst =

∫
ζs

(
~ψ · ~ψ>

)
dζs

Ki =

∫
ζs

∫
ζt

∂

∂xi
~ψ · ~ψ> dζt dζs

F−i =

∫
ζt

∫
ζis

~ψ · ~ψ>|xi=0 dζ
i
s dζt

F+
i =

∫
ζt

∫
ζis

~ψ · ~ψ>]xi=1 dζ
i
s dζt

F−,+i =

∫
ζt

∫
ζis

~ψ|xi=1 · ~ψ|xi=0 dζ
i
s dζt

F+,−
i =

∫
ζt

∫
ζis

~ψ|xi=0 · ~ψ|xi=1 dζ
i
s dζt.

(52)
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Which result in the fully discrete formulation

~q1 = ~q0 +

N∑
i=1

M−1
s Ki ~fi+

1

2

N∑
i=1

N∑
k=1

M−1
s F−k

(
~fi + |smax|~qi

)
+

1

2

N∑
i=1

N∑
k=1

M−1
s F+

k

(
~fi + |smax|~qi

)
+

1

2

N∑
i=1

N∑
k=1

M−1
s F−,+k

(
~f

(r)
i + |smax|~q(r)

i

)
−

1

2

N∑
i=1

N∑
k=1

M−1
s F+,−

k

(
~f

(l)
i + |smax|~q(l)

i

)
+

M−1
s Mst

~S.

(53)

Compared to the discontinuous Galerkin scheme with Runge-Kutta time-
stepping this scheme offers two advantages.

• Through the unbound number of nodes in time, we are able to reach a
higher order of convergence than 4 in a easier way than by Runge-Kutta
methods.

• And as the calculation only depends on the fluxes in the space-time in-
terval from neighbouring elements, there’s only one synchronization step
required in each iteration.

However we have a higher need in memory to store the time space degrees
of freedom. The exact additional amount depends on the choice of nodes as
discussed in 5.
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5 The nodal basis

As functional basis for the approximation of the solution of a partial differential
equation we have a wide variety of options. For example the Legendre poly-
nomials, as described in [5, p. 43 – 51], would lead to well conditioned mass
matrices as used in chapters 3 and 4.

For simplicity reasons we will use the Lagrange basis in this thesis. The
polynomial Lagrange basis of dimension n + 1 on an interval [a, b] consists of
n+ 1 Lagrange polynomials which are distinctly defined by a set of n+ 1 nodes
{ξ0, ..., ξn|ξi 6= ξj} on the interval. The Lagrange polynomials themselves are
defined by the term:

ψi(x) =
∏

k∈{0...N}/i

(x− ξi)
(ξk − ξi)

. (54)

On the set of nodes the basis evaluates to:

ψi(ξj) =

{
1 , for i = j

0 , for i 6= j.
(55)

By referring to the set nodes, this is also called a nodal basis.
A solution u is approximated on this basis by its values u(ξi) evaluated on

the set of nodes

u ≈ uh =

n∑
i=0

ψi · u(ξi). (56)

The advantage, compared to other bases, is the simple calculation of nonlinear
flux and source terms on the nodes, as already used in the chapters 3 and 4,

f(uh(ξj)) = f(

n∑
i=0

ψi(ξj) · u(ξj)) = f(u(ξj)). (57)

In contrast, at this point the Legendre polynomials would require a L2-
projection, which takes more effort than the simple evaluation on the nodal
basis.

Basis functions in N dimensional spaces are defined by the tensor product

of one dimensional Lagrange basis functions of order N
(j)
p for each dimension j

with variable xj

ψi(~x) =

N∏
j=1

ψi(j)(xj), (58)

with the distinct index i

i =

N∑
j=1

i(j)(N (j−1)
p + 1)j−1. (59)

5.1 The choice of nodes

When choosing a set of explicit nodes we have to face three contrary aspects:
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1. To reduce computational costs (as floating point operations and memory
storage) we should reduce the amount of nodes to a minimum, without
loosing any order of convergence.

2. The polynomial approximation should be as accurate as possible.

3. To obtain an optimal use of the underlying hardware, we want to conform
the sparsity patterns of the matrices.

Hence time and space can be considered equal in integrals we will neglect the
notational difference in this chapter.

5.2 The number of nodes

A polynomial in d space dimensions of degree n in each dimension is distinctly
defined by

1

(d+ 1)!

d+1∑
j=1

(n+ j)

nodes. This is the triangular number in d multiple dimensions. Figure 5 shows
a comparison of two different sets of nodes in two dimensions, the first naive,
by calculating the Cartesian product of an one dimensional set of nodes, the
second triangular, by decreasing the number of nodes in the first dimension
with growing second dimension.

0.5 1
0

0.5

1

x

t

0.5 1
0

0.5

1

x

t

Figure 5: Legendre nodes on the space time interval [0, 1]2 The left set of nodes
is the Cartesian product of one dimensional Legendre nodes, the right decreases
the number of space nodes in the space time dimension.

Both sets of nodes define the same space of polynomials, the savings between
the naive and the triangular approach of memory are

nd − 1

(d+ 1)!

d+1∑
j=1

(n+ j) = nd − 2 · n+ d+ 2

2d!
∈ O(nd) (60)

nodes per element.
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The impact on the size of mass stiffness and flux matrices is even more
significant. For the Cartesian product we obtain

n2·d

entries, for the triangular approach

4 · n2 + 4n(d+ 2) + (d+ 2)2

4d!2
,

which only grows quadratic with the number of nodes.

5.3 Sparse matrices

Mass, stiffness and flux matrices will be analyzed in general definitions, as the
corresponding matrices of chapter 4 and 3 differ only in index transformations
and the dimension of the basis. The explicit matrices of these chapters will be
mentioned as examples. The indexing of multidimensional basis functions will
be equal to the one we already used in the beginning of this chapter.

At first we will look at the matrices with the Cartesian product of N one
dimensional nodes as basis.

Entries of mass matrices on a domain ζ = [0, 1]
n

for some n, have the form,

Mij =

∫
ζ

ψi · ψj dζ =

∫
ζ

∏
d∈{1...n}

ψid(xd) · ψjd(xd) dζ =

∏
d∈{1...n}

∫ 1

0

ψid(x) · ψjd(x)dx.

(61)

With this we can analyze the integrals in one dimension. By using the definition
of the Lagrange polynomials we get∫ 1

0

ψi · ψj dx =

∫ 1

0

∏
k∈{0...N}/i

(x− ξi)
(ξk − ξi)

·
∏

l∈{0...N}/j

(x− ξj)
(ξl − ξj)

dx (62)

and obtain for i 6= j∫ 1

0

∏
k∈{0...N}

(x− ξi)
(ξk − ξi)

·
∏

k∈{0...N}/i,j

(x− ξj)
(ξk − ξj)

dx. (63)

The first product states a distinct polynomial of degree N with the set of nodes
as roots, the second a distinct polynomial of degree N−2. By a set of orthogonal
polynomials all entries except the diagonal would become zero. Such sets are
given by the Jacobi polynomials, for which a definition can be found in [2,
p. 171–178]. A special case of these orthogonal polynomials are the Legendre
polynomials, which can be generated by the Gram-Schmidt algorithm with the
simple monomials as initial function set, as explained in [4, p. 389–391].

We choose the roots of the Legendre polynomial of order N , as the set of
nodes (which is called Legendre nodes), the first polynomial of the integral in
equation (63) becomes the Legendre polynomial and is orthogonal to the second
polynomial. We receive a diagonal mass matrix

Mij =

{∏
d∈{1...n}

∫ 1

0
ψ2
id
dx , for i = j

0 , for i 6= j.
(64)
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Figure 6: Sparsity pattern for the mass matrix M for n = 5 nodes in space and
time, and the mass matrix Ms for n = 6 nodes in space

Analogously to (61) we can decompose a stiffness matrix derived with respect
to xk:∫

ζ

ψi ·
∂

∂xk
ψj dζ =

∫
ζ

ψik(xk) · ∂

∂xk
ψjk(xk) ·

∏
d∈{1...n}/k

ψid(xd) · ψjd(xd) dζ =

∫ 1

0

ψik(x) · ∂
∂x
ψjk(x) dx ·

∏
d∈{1...n}/k

∫ 1

0

ψid(x) · ψjd(x) dx.

(65)
All integrals except the one containing the partial derivative are equal to the one
we analyzed in equation (62) . With the definition of the Lagrange polynomials
and the product rule we receive for the first integral:∫ 1

0

ψi ·
∂

∂x
ψj dx =∫ 1

0

∏
k∈{0...N}/i

(x− ξi)
(ξk − ξi)

·
n∑
l=0

1

ξl − ξj

∏
m∈{0...N}/j,l

(x− ξj)
(ξm − ξj)

dx =

n∑
l=0

1

ξl − ξj

∫ 1

0

∏
k∈{0...N}/i

(x− ξi)
(ξk − ξi)

·
∏

m∈{0...N}/j,l

(x− ξj)
(ξm − ξj)

dx =: Aij .

(66)

Unlike equation (62) only the integrals with i 6= l and of i 6= j can be eliminated,
resulting in:

Aij =

{
Aii , for i = j

1
ξi−ξj

∫ 1

0

∏
k∈{0...N}/i

(x−ξi)
(ξk−ξi) ·

∏
l∈{0...N}/j,i

(x−ξj)
(ξl−ξj) dx , for i 6= j.

(67)
In combination with equation (62) we get:∫

ζ

ψi ·
∂

∂xk
ψj dζ =

{
Aikjk , for id = jd ∀ d ∈ {1, . . . , N} /k
0 , else.

(68)

Two sparsity patterns of stiffness matrices are illustrated in figure 7, the different
patters are the result of the different partial derivations.
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Figure 7: Sparsity patterns for the matrices K1 and Kt for the Cartesian product
of Legendre nodes

However equation (68) doesn’t hold for the triangular choosing of nodes of
chapter 5.2. By using the Legendre nodes of order N in second dimension and
of decreasing order in first dimension we still obtain a diagonal mass matrix.
Equation (64) only holds for the integrals in the first dimension, if the indices
in the second dimension are equal, we obtain:

Mij =
∏

d∈{1,2}

∫ 1

0

ψid · ψjd dx =


0 , for i2 6= j2

0 , for i2 = j2 and i1 6= j1∏
d∈{1,2}

∫ 1

0
ψ2
id
dx , for i2 = j2 and i1 = j1.

(69)
By partially deriving in the first dimension, the varied choosing of nodes in

first dimension has no impact on the structure obtained by the orthogonality of
the integrals without the derivative in (65). We still get a matrix in block form
as shown in figure 8 on the left.

By partially deriving in the second dimension though we lose the orthogo-
nality of the integral without the partial derivative for indices with i2 6= j2 , the
result is shown in figure 8 on the right. Only entries where the second indices
are equal, are eliminated.

Independently from the number of nodes and space dimensions, only for a
single stiffness matrix we obtain a sparsity pattern which is predestined for a
block structured implementation. All other stiffness matrices are dense.
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Figure 8: Sparsity patterns for the matrices K1 and Kt for the triangular set
of Legendre nodes

5.4 Accuracy of the approximation

For the last aspect, to determine the accuracy of our approximation, we will use
the well known Lebesgue constant

Λn =

∥∥∥∥∥
n∑
i=0

|ψi(x)|

∥∥∥∥∥
∞

with ‖f(x)‖∞ being the uniform-norm ‖f(x)‖∞ := supx∈Ω |f(x)| and n the
number of used interpolation nodes.

As shown in [2, p. 204–205] the Lebesgue constant sets an upper boundary
for the error between the solution u and the approximation uh, Eh := ‖u− uh‖∞
relatively to the error of the best polynomial approximation by n degrees of
freedom E∗:

Eh ≤ (1 + Λn)E∗.

By this constant we can compare the quality of the approximations of different
sets of nodes. In our case we will look at the Legendre nodes from the last
chapter and compare them to simple equidistant nodes, and two sets of nodes
known for their small Legendre constants, the Chebyshev and the Lagrange-
Gauss-Lobatto nodes, whose generation can be found here [2, p. 309–310].

In figure 9 are the evaluated Lebesgue constants, in two different scales, for
the four sets of nodes for 1 up to 20 degrees of freedom. As we see in the
left graph, for equidistant nodes the Legendre constant has exponential growth
with n. In fact it was shown by Turetsky in 1968 [8] that the constant for

equidistant nodes is approximately 2n+1

e·n logn . This limits the use of equidistant
nodes, especially for the usage on higher orders of convergence. Instead we
could use the Lagrange-Gauss-Lobatto nodes and the Chebyshev nodes, which
both have proved logarithmic growth ([9]) . The Legendre nodes might make
our matrices much simpler, but compared to the Lagrange-Gauss-Lobatto or
Chebyshev nodes only offer linear growth.
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Figure 9: Lebesgue constant for equidistant, Chebyshev, Legendre and
Lagrange-Gauss-Lobatto nodes.
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6 Convergence Analysis

In this chapter we will compare the errors and orders of convergence of the three
methods, the finite volume method, discontinuous Galerkin with Runge-Kutta
time stepping and discontinuous Galerkin with the ADER DG-time predictor
we introduced in the chapters 3.1 3 and 4.

To compare the assumptions we made on the order of convergence we need
to define a metric for the error analysis.

In this thesis we will use the normalized L2 norm defined as

∥∥qexact − qnumeric∥∥2
=

∑#Elements
e=1

∑N
i=1

(
qexact(x

(e)
i )− qnumeric(x(e)

i )
)2

∑#Elements
e=1

∑N
i=1 q

exact(x
(e)
i )2

(70)

where #Elements is the number of elements in the simulation, x
(e)
i the i-th

node in element e, and qexact an analytically determined solution as we did in
chapter 1.

The convergence analysis was performed for the advection equation as de-
scribed in chapter 2 in equation (6). The domain was an interval of size two on
which the initial values were defined by the Gaussian distribution:

1

σ
√

2π
· exp

(
−1

2
·
(
x− µ
σ

)2
)

, (71)

with µ = 1 and σ = 1. An wave-speed of u = 0.05 was selected, for which the
time of on wave circulation is t = 40. The time-step ∆t was calculated pending
on the element size ∆x and the spatial order N by the term:

∆t =
∆x

u · 2(N + 1) · 250
, (72)

which is a combination of the CFL condition and the additional factor 1
250 . The

intention to this factor was decreasing the temporal error, while keeping the
computation time at an reasonable length.

In diagrams of the analysis we will always display the expected error graph
pending on the error value e of the smallest amount of degrees of freedom d1 as
a dotted curve. For an expected convergence order of N the curve is defined by
the term:

e ·
(
d1

x

)N
, (73)

with x being the number of degrees of freedom.
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6.1 The Finite Volume Method

As shown in 3.1 we can regard the finite volume method as a discontinuous
Galerkin method of first order, with Runge-Kutta time stepping of first order
(also called Euler method), thus we’re expecting linear convergence.

In figure 6.1 we see the results of seven simulation runs with growing number
of degrees of freedom.
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Figure 10: Error analysis for the finite volume method on a logarithmic coordi-
nate system. The dotted graph shows the expected linear error growth due to
the first measured error

The graph shows that the expected linear convergence order is almost reached.
As the error is greater than the element size it won’t reach machine presition
for this example.

6.2 The Discontinuous Galerkin method with Runge Kutta
time stepping

The order of convergence of the discontinuous Galerkin method depends on the
spatial order of convergence of the elements, thus the number of nodes N in
a single element and the temporal order, the order of the numerical solver of
the ordinary differential equation of the semi discrete scheme we developed in
section 3.

In the concrete implementation of section 3 we used the classical Runge-
Kutta solver of order four, thus we’re expecting an overall order of convergence
of min (4, N).
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In figure 11 are the results of simulations for different spatial orders N dis-
played.
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Figure 11: L2-Errors plotted for different spatial orders on a logarithmic coor-
dinate system

In comparison to the ideal graph, spatial orders of less or equal four have
the expected order of convergence.

For orders higher than four the error graph is parallel to the fourth order,
and falls with growing degrees of freedom, to an even lower order of convergence.
A reason why the convergence for the fifth order error graph drops on an order
lower than four was not found.

6.3 The ADER DG method

For the ADER DG method we expect convergence equal to the minimum of the
number of nodes in time and nodes in space according to chapter 4. In figure
6.3 is an illustration of the simulation errors.
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As we see the results aren’t as accurate as in the previous analysis. But
the error-graphs are oriented on the optimal graphs and reach the wished order
of convergence with growing degrees of freedom. One possible reason to this
diffuse results could be the iterator scheme of section 4 for which no distinct
statement is given on the needed number of iterations (in this analysis we used
3 steps).
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7 Conclusion

In this thesis I gave an comprehensive overview of the general theory of discon-
tinuous Galerkin methods. Additionally to solving the time integral through
Runge-Kutta methods in chapter 3, we encountered the ADER time stepping
approach in chapter 4.

The options we have on defining the nodal basis and the impacts they have
on the accuracy of the approximation were discussed in chapter 5. Especially
the size and the sparsity patterns of the mass, stiffness an flux matrices were
analyzed in this chapter. As a result we acquired the nodal basis on Legendre
nodes on which we gain diagonal mass matrices and a stiffness matrix in block-
structure.

For other bases which can’t be translated to the nodal basis, the same anal-
ysis has to be performed. Finding a set of orthogonal functions, which are
also orthogonal to their derivatives, would directly lead to diagonal mass and
stiffness matrices. Additionally sparse matrices can be gained trough inexact
integration, as long as its error has the same magnitude as the error of the
approximation of the numeric solution.

In the last chapter 6 we analyzed the errors of the methods for the simple
advection equation. The orders of convergence we expected through theory
could be confirmed for the finite volume method and the discontinuous Galerkin
with Runge-Kutta time stepping. For the ADER approach we received less
optimal convergence results. At this point further and more detailed analysis
has to be performed. Furthermore the iterator function of section 4 has to be
examined to give a distinct statement on the correlation between the number
of iterations and the accuracy of the result.

Additionally a direct comparison between the number of operations needed
with Runge-Kutta time-stepping and ADER time stepping has to be topic of
future work.

If the convergence orders can be confirmed in upcoming testings, the ADER
time stepping extends the toolbox to solve the time ODE with a promising
alternative.
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