

ASAGI – A Parallel Server for Adaptive Geoinformation

Exascale Applications & Software Conference (EASC2016)

Sebastian Rettenberger, Meister Oliver, Michael Bader, Alice-Agnes Gabriel (Munich University)

26 April 2016

Motivation – Parallel Simulations with AMR

2011 Tohoku Tsunami simulated with sam(oa)²
Bathymetry derived from: The GEBCO_2014 Grid

Displacement derived from: Shao, Li, Ji (UCSB) - Preliminary Result of the Mar 11, 2011 Mw 9.1 Honshu Earthquake

Geoinformation

- · Material and geographic datasets
 - → space- and time-dependent
- · In our examples:
 - Permeability and porosity (porous media flows)
 - Bathymetry and sea floor displacement (Tsunami simulations)
 - · Material velocity properties (Earthquake simulations)

Geoinformation in Massively Parallel Simulations

How can we handle Geoinformation ...

- in massively parallel simulations with adaptive mesh refinement?
- if it does not fit into the memory of a single node?
- if multiple resolutions are available?

Migration and replication

ASAGI – A parallel Server for Adaptive Geoinformation

- · Open-source library for Geoinformation
- Easy-to-use interface for integration into existing applications:
 - No knowledge about the mesh or partitioning/load-balancing required
 - Thread-safe and NUMA-aware for applications with hybrid parallelization (MPI+X)
- Interface for C, C++ and Fortran
- Datasets have to be stored as Cartesian grids
 - → Is the case for many (sampled) Geoinformation datasets
- · Support for multiple datasets and datasets with multiple resolutions

Replicate data on-demand

- Data is cached after replication → Additional accesses do not require communication
- Block-caching reduces the number of replications
 - → Makes use of spatial and temporal locality of Geoinformation
- · "Least recently" used chunks are removed from the cache

Accessing data from ASAGI

- · Use local cache if possible
- Transfer chunk from other NUMA domains, MPI tasks or the I/O library

Storage – Full Mode

- Missing chunks copied to local cache from static memory of other nodes/NUMA domains

Storage – Cache Mode

- Dictionary contains locations of chunks on other nodes/NUMA domains
 - ightarrow is updated after every replication
- · File is used if a chunk is not stored in any cache

Communication

Communication between nodes:

- Disabled
 - → In full mode, each node stores the whole dataset
- Remote memory access (using MPI windows)
 - → complex synchronization in cache mode with MPI mutexes
- An explicit communication thread (with MPI_send, MPI_recv)
 - → One core is required by ASAGI for a communication thread (useful with hybrid parallelization)

NUMA detection:

- Automatic detection based on libnuma
 - → One cache per NUMA domain
- Requires pinning of threads (automatically done in OpenMP)

SuperMUC Phase 1

- Ranked 23rd on Nov'15 TOP500 list
- 9216 dual socket Intel Xeon E5-2680 (Sandy Bridge) nodes with 16 cores and 32 GB memory each
- 18 islands connected via an 4:1 pruned tree with FDR10
- Peak performance: 3.2 PFlop/s
- GPFS file system with 180 GB/s
- IBM MPI and Intel MPI available

sam(oa)2

- Parallel framework for Partial Differential Equations (PDEs)
- Dynamically adaptive triangular mesh based on the Sierpinski space-filling curve traversal
- 2 phases:
 - Initialization phase starts with a very small number of cells and successively refines and distributes the grid to multiple MPI tasks
 - Time stepping phase allows further refinement and coarsening in each time step
 - \rightarrow ASAGI provides Geoinformation in both phases for every refinement/coarsening
- · ASAGI is tightly integrated into the refinement/coarsening step
- Hybrid Intel MPI+OpenMP parallelization with one task per node

Two-Phase Porous Media Flow

- 2.5D oil reservoir simulation
 - ightarrow AMR in horizontal dimensions and uniform refinement in vertical dimension
- 8,000 to 33 million cells with 340 layers
- ASAGI provides permeability tensor and cell porosity (4× 1.1 billion data points; 17 GB of input data)
- $64 \times 64 \times 340$ data points per chunk
- 5.3 GB cache

Two-Phase Porous Media Flow – Results

Tsunami Simulation with Time-Dependent Displacement

- Simulation based on the 2011 Tohoku tsunami with time-dependent displacements
- 427 MB bathymetry data and
 2.8 GB displacement data with 80 time steps
- $128 \times 128 \times 4$ data points per chunk
- 32 + 128 MB cache

Tsunami Simulation – Results

SeisSol

- Earthquake simulation code that couples wave propagation to dynamic rupture simulations
- Based on static but fully unstructured tetrahedral meshes
 - → ASAGI only required for the initialization
- 3D velocity models (density, shear modulus, first Lamé parameter) provided by ASAGI

SeisSol – 1994 Northridge Earthquake

- Mesh with 75 million cells
- ASAGI provides 3D velocity with 527 million data points (5.9 GB) derived from SCEC community velocity model Harvard (CVM-H)
- $32 \times 32 \times 32$ data points per chunk
- 48 MB cache
- Hybrid IBM MPI+OpenMP parallelization with one task per node

1994 Northridge – Results (full mode)

Outlook

New query interfaces:

- · List of data points, range queries
- Toolbox for interpolation and averaging

```
// Range query
asagi->getRangeFloat(start, end, &values);
// Averaging
value = getAvgFloat(asagi, start, end);
```

Support for generation of coarse resolutions on the fly

Integration into the European Horizon 2020 project "ExaHype"

https://github.com/TUM-I5/ASAGI

or contact

rettenbs@in.tum.de