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Abstract

In this thesis improvements to the k-d-tree based load balancing algorithm of the
molecular dynamics simulation framework MarDyn will be presented. While already
being highly scalable its load balancing algorithm still left room for improvement,
because its central part, the load estimation function, was solely based on heuristics.
For this work it was replaced with a function that actually uses time measurements for
the estimation. These measurements then made it easier to expand the algorithm so it
would be able to correctly estimate the load for simulations with more than one particle
type and for simulations that are run on heterogeneous systems. The k-d-tree based
load balancing algorithm itself was also modified. Some of these changes were needed
for the support of heterogeneous systems, but in this thesis there is also a short look
at how certain modifications to the splitting rules of the k-d-tree-nodes can influence
performance.
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1 Introduction

Simulations became an essential part of science and engineering, because they enable
the test of new and interesting ideas without needing to create an expensive, time
intensive test prototype, which might even be destroyed as part of the tests. Computer
simulations can offer a cheap and flexible alternative, but it is normally quite hard to
model a real life problem on the computer. The more detailed these models get, the
more computing power is needed. This is a problem, since as the increase in speed of
single processors/cores slows down, it becomes more and more important to parallelize
the computer simulations, so that the power of multiple processors can be harnessed.
This parallelization makes the program even more complex, because now the load
distribution and the interaction between the different processors has to be considered.

One of these highly scalable simulations is 1s1 mardyn, which models the interaction
of molecules. It was created as part of the work for [Bucl10]. While efforts were made to
optimize the processor communication and the performance of the serial calculations,
the core of the k-d-tree based load balancing algorithm was not changed much since
its initial release. It is solely based on a heuristic function based solely on the number
of particles. Even though it is quite limited it was used to also support heterogeneous
hardware in the k-d-decomposition. The old load estimation was replaced with a new
algorithm that takes time measurements, that are made before each simulation start,
into account. This was then used to support more than one particle type in the load
estimation, which was not previously done. Support for heterogeneous systems was
also re enabled since the old algorithm could not easily be modified to use the time
values. The k-d-tree load balancing algorithm itself was also modified, which allowed
it to choose the splitting planes needed for the algorithm more freely.

This thesis will first give a short overview over the general theory behind molecular
simulations, with a look at the needed calculations interactions and general ideas for
balancing the resulting load on many processors. Then in chapter 3 this thesis will go
into more detail about the implementation of Is1 mardyn, followed in chapter 4 by the
improvements to the existing load balancing algorithm that were made as part of this
work and their performance effects. The thesis will end with a short conclusion and a
chapter with ideas for future improvements.




2 Molecular Simulations

2.1 Force Calculation

As described in [Bucl0] the basis of every molecular simulation is the n-body prob-
lem, which describes all simulations where forces between many particles have to be
calculated. Since these molecules can become quite complex it is advisable to reduce
calculation times by reducing the force exerting parts of the particles to certain force
centers, which don’t necessarily correspond to single atoms. In the so called soft-sphere
models they define continuous potentials. The most important one is the Lennard-Jones
potential which was first described in [Jon24a] and [Jon24b] and today is often given in

the following form:
12 6
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—e is the value of the minimal potential, o the distance to the center where the potential
is zero, where the attractive and repulsive forces are equal. r;; is the distance between
the i" and j*" particle. Examples for Lennard-Jones-Potential graphs for different
values of € and ¢ can be seen in Figure 2.1. This potential models the interaction
of the attracting and repulsive forces of two normal particles. The positive term
models the repulsive forces, that are exerted by overlapping electron hulls of two
different molecules. The negative term models the attractive van-der-Waals potentials.
The Lennard-Jones-Potential alone isn’t enough to model particle interactions. More
complex molecules also contain dipoles and quadrupoles, which have to be taken
into account. This is still not enough, since these two only represent unequal electron
distributions in overall neutral molecules, so additionally real charges (additional/
missing electrons) have to modelled as well. With these potentials the forces and the
resulting movements of the particles can be calculated with differential equations,
which cannot be solved analytically, but need to be discretized. This can for example
with the Stormer-Verlet method described in [Ver67]. Normally it is enough to only
calculate pairwise interactions between the the different potentials. This means that
there are 1 - (n — 1) € O(n?) Molecule interactions to consider. This is still quite a lot,
especially for large systems, but the structure of the Lennard-Jones potential allows for
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Figure 2.1: The Lennard-Jones potential for different values of € and ¢

a simple optimization. It can be easily seen that the resulting forces of the potential
go quickly to zero if the molecule distance gets bigger. To exploit this fact one can
simply stop calculating the interactions if two molecules are further apart than a certain
defined distance, called the cut-off radius. This is used in the linked cells data structure,
where the simulation domain is split into cubic cells with a side length that is greater or
equal to the cut-off radius (see Figure 2.2). This means that a particle can only interact
with the particles in its cell and the neighbouring cells that share at least a corner
with its cell. Furthermore even if a particle is in a neighbouring cell, the forces need
to be only calculated if it is actually in the cutoff radius, otherwise only the distance
between the two molecules needs to be calculated (see Figure 2.2). To calculate all
forces in a simulation it is necessary to iterate over all cells. For every molecule in such
a cell first the interactions with the other molecules in the same cell (further called
inner cell interactions) and then the interactions with the molecules in neighbouring
cells have to be calculated (further called neighbour interactions). If one would calculate
the latter for all particles in all neighbours, it would lead to unnecessary calculations.
Newton’s Third Law states, that if an object exerts a force on another one, that the
object itself experiences a force equal in magnitude and in the opposite direction of
the exerted force. That means for every particle pair you only need to calculate one
force, because the other one can be directly calculated from it. This is easy to do for
inner cell interactions, because you simple iterate over all pairs only once, but for
neighbour interactions this is not as easy. Here it has to be guaranteed that for each
cell the interactions are only calculated between it and half of its neighbours and not
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Figure 2.2: A small 2D linked cells structure. For each molecule the interactions with
all molecules inside of the cutoff radius have to be calculated. If a part of the
cells is inside of the cutoff radius, then for all particles at least the distances
have to be calculated. Particles in cells that are completely outside of the
cutoff radius can be ignored.

o

all of them. An example of how that looks can be seen in Figure 2.3. Since simulations
domains cannot be infinite, an important design decision that has to be made, is how
to deal with the border of the simulation area. One idea would be to let the particles
bounce back from the wall, while another would that particles that leave the simulation
on one side come back in on the other side, which can be achieved by simply linking
the cells on opposite simulation boundaries. This creates a periodic domain.

Figure 2.3: While naive method (left) calculates all interactions with all neighbours,
the better method on the left only calculates the interactions with half of
neighbours (in blue) of the currently iterated cell (green), so that double
force calculations are avoided.




2 Molecular Simulations

2.2 Parallelization & Load Balancing

2.2.1 General

As already stated in the introduction, molecular simulations can get relatively big
and complex, so it is advisable to distribute the calculations on multiple processors.
The linked-cells data structure offers a relatively easy way to achieve this, because the
load can be distributed by distributing the cells in a way that partitions the simulation
domain. As long as a cell only borders cells that are also handled by the same
processor, the force calculations can be computed as in the sequential case. The
problems arise, when forces between particles that are stored on different processors
have to be calculated. The simplest way to do this would be for each processor to store
a so called halo, which contains all cells of other processors that are neighbours of cells
owned by the processor in question (see Figure 2.4). Then to calculate the neighbor

Figure 2.4: Simple linked cell structure with periodic boundary conditions divided
between four processors (indicate by the different colours). If no forces are
exchanged between the processors, the darkest cells of each colour have to
be shared by four processors, the medium dark cells by two and the lightest
cells are only stored on one processor.

interactions in border cells this halo information can be used. No forces are calculated
for particles in the halo, since this is done by the processor who shared the particles
with the other processors. It is important to note that this approach does not make use
of Newton’s third law, so the neighbour interactions across processor boundaries have
to be calculated twice. To avoid these redundant interactions it is possible to not store
the full halo but only half of it (similar to the way it was done for linked cells). Then
only one of the involved process calculates the boundary crossing forces but these have
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Figure 2.5: The four different presented load balancing algorithms, k-d-decomposition,
diffusion, space filling curves and graph based algorithms; image taken
from [Buc10]

to be communicated to the second involved process. For further details one can look at
[Bro+93]. In both cases it is advisable to keep the surfaces of the processor areas small,
because bigger surfaces lead to more communication overhead in both cases and to
more calculation load (from the unecessary double calculations) in the former case. The
sum of the communication cost and cost of the additional calculations (if there are any)
will be further called separation costs. An example for a good cell distribution, which
keeps the surfaces of the processor areas as small as possible, would be a decomposition
made out of cubes or at least cuboids that are as close as possible to cubes. These have
the best volume to surface ratio (meaning more volume per surface area). It is easy to
see, that such a distribution still isn’t great, if it doesn’t take the molecule distribution
into account, when heterogeneous molecule systems are considered. Here the density
between two parts of the simulation can differ by a lot, so it might be possible that
only a few processors get high density areas while the rest get only low density areas.
The few processors would then heavily slow down the simulation. So somehow it
has to be ensured that the load of the processors is as equal as possible, which in
a dynamic simulation can only be achieved by dynamic algorithms. Generally one
can divide these solutions into global and local algorithms. Global algorithms store a
central partitioning data structure, while local algorithms store as little information as
possible and only exchange load with their neighbours. The former are generally more
expensive so they should be used less often than the local algorithms, but since they
have access to information about the whole domain, they can theoretically create better
partitions. For the algorithms to be able to partition the domain so that every processor
gets the same load there needs to be some kind of load estimation for each cell, which
estimates the time a processor needs to iterate over it. This can be a simple heuristic
function which is solely on the amount of molecules in the cell (and its neighbors),
but it can also make use of time measurements of previous iterations. If not otherwise
mentioned the information in this section is based on [Buc10].
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2.2.2 Diffusion

Diffusion is a completely local algorithm. The idea is that every processor only knows
its dynamically changing part of the complete domain. If two neighbouring processors
take a different amount of time for their respective area, some of the border cells
can be exchanged to equalize the load. This exchange needs to take differences in
separation cost between the old and the new decomposition into account. These stem
from the fact that every exchange generates a new border, where old border cells are
now completely inside of one process, while other cells become new border cells and
this of course also changes the costs. One way to handle diffusion is the so called
sender initiated exchange. If a processor detects that it has to much load, the border
cells, that neighbour processors with less load, are sorted, so that the cells with the
highest expected load reduction (the sum of the saved separation cost and the lost
force calculations) are sent to the neighbouring processes until the load of the sending
processor is equalized. In the receiver initiated exchange the receiver is the main actor.
Of course you somehow need to define a initial decomposition. This can either be
simply a static, molecule unaware decomposition, since the load differences should be
amended relatively quickly or one of the other presented load balancing algorithms
could be used. This doesn’t necessarily only need to happen at the beginning of the
simulation. It is also possible to repeat this process, so that in-between the global
decomposition the diffusion algorithm ensures a good load distribution, which then
makes up a hybrid approach. This idea was described in [HPG16]. A big problem
with this approach are the dynamically changing processor areas, that are not as clearly
defined as in the other algorithms. This means that this this approach takes a lot of
space to represent these areas in memory and it takes more time to iterate over the cells.
A normal way to store the owned cells would be a octtree. A big advantage of this
approach is that it can run on heavily heterogeneous architectures, without needing
changes in its basic algorithm because the load calculation is only based on the time
the processors needed and not on their theoretical performance.

2.2.3 Space-Filling Curves

As their name suggests, space filling curves can be used to linearise multidimensional
space, so that each point in space (here each discrete cell) can be bijectively mapped to
a point on a curve. This is very useful for load balancing, since it effectively reduces
the dimensions of the problem from three to one. To distribute the load, each processor
gets a continuous part of the curve. This ensures the locality of the cells and also
requires little memory, since the processor only stores the begin and end of its domain
on the curve as two indices. With these two values the actual the function that defines
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the curve is enough to calculate the owned part of the domain. If you assume that each
cell has an estimated load associated with it, it becomes relatively easy to distribute
the processors. A version of how to do this in parallel was described in [HPG16].
If the rebalancing is done often enough it can happen that only processors that are
neighbours on the curve actually need to exchange cells, which makes space filling
curves a hybrid between local and global algorithms. Space filling curves can only fill
finite quadratic/ cube-shaped linked-cell structures with sides lengths that are powers
of two. To use the for all cuboid structures, one fills it up to the next full cube with
power of two side lengths, which means the curve goes through "empty space". This
space can be either filled with empty cells or be ignored in a more efficient way. The
biggest downside of space filling curves are their restrictive nature, which might not
allow close to optimal load distributions.

2.2.4 Graph-Based Structures

The graph based approach differs from the other algorithms because here the load
balancing problem is reduced to another seemingly, completely different problem: the
graph partitioning problem. One version of it goes as follows: given a graph with
node and edge weights and the number of partitions k, partition the graph in such
a way, so that the number of edges that cross partitions is minimal, while each the
sum of the node weights in each partition is as equal as possible. This is a NP-hard
problem. The first idea that it would make sense to model the cells as graph nodes
is probably also the best. The edges connect the nodes corresponding to neighboring
cells and the edge weights represent the separation costs. Concretely this could be
represented by the number of separated particle pairs. The node weights contain the
load estimation. The problem with this approach for general linked-cells-based that
while the separation costs are minimized globally, it might be unevenly distributed on
the different processors. That this method can still lead to good despite of this problem
was shown in [HPG16]. A framework which uses these structures is ParMETIS which
is partly described in [SKKO00].

2.2.5 k-d-Tree

A k-d-tree is a geometric tree structure. It recursively splits the domain into two halves
separated by an axis-aligned hyperplane. In the beginning there is only one node which
encompasses the whole domain. To use this structure for load balancing, a list of all
processors is assigned to this node. Now the domain is split, so that the load of the
domain is roughly halved. This creates two child nodes, where each of them gets half
of the processors of the parent node. In every step each of the processors calculates
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the split of the node it is assigned to. This is done recursively until each node contains
only one processor. These are the leaves of the tree. If there are still a lot of processors
left, it is not necessary to half the load, it would simply suffice to split the domain
anywhere and then assign different numbers of processors to each half, so that the load
per processor remains roughly the same. Additionally if there are only a few processors
left it might become feasible to test every possible splitting plane, since there could be
others apart from the load halving one, that lead to a better distribution of processors,
where the loads per processor are as equal as possible. In each recursion level it has to
be decided in which dimension the tree is split. If this is too expensive there are two
possibilities: Either switch dimensions after each split, so that the domain is split along
all of the axes in a rotating fashion or simply always split along the axis, along which
the domain is biggest. The latter is probably better since the resulting nodes should be
more cubic than in the former case, which reduces the overall separation costs.

As in the other algorithms it could be quite problematic, if the hyperplanes always
cut through high density areas. To avoid this it would be possible to add the separation
costs to the cell loads. The problem here is that a cut in an earlier recursion level
might require that there are cuts through high density areas in later recursion levels.
Either one can ignore this completely and hope that a good cut in a higher dimension,
doesn’t lead to problems later on or one can fully calculate the decomposition in
every recursion step for every candidate cut, which means that for every cut the best
decomposition is calculated. This is of course problematic if there are a lot of possible
cuts in each recursion level, because the the number of operations scales exponentially
in this amount but it would also generate a perfect k-d-decomposition. A compromise
between the two options is to implement a processor threshold. Only if a cell contains
less cells than this thresholds the full search is activated.




3 MarDyn

3.1 General

As mentioned MarDyn is a relatively big framework used solely for molecular simula-
tions. Its initial state was extensively described in [Buc10] though since then a variety of
changes were made. It uses a linked cell data structure and every processor stores the
full halo of its area, which means there are redundant force calculations (as mentioned
in the previous section). The domain is normally periodic. The domain decomposition
algorithm is a dependency of the simulation and can be relatively easily replaced. The
parallelization strategy for this work was solely based on mpi even though there were
some efforts made to include OpenMp parallelization. The framework also supports
extensive output for example time measurements of the whole simulation and for each
processor. The processor times measured per processor are split into the force calcula-
tion time and the communication time. The later also includes the time that is needed
to create the domain decompositions. MarDyn also supports vectorization of the force
calculations. MarDyn is generally very modular and under constant development, but
the above mentioned attributes describes the configuration that is assumed for this
work.

3.2 Load Balancing

3.2.1 Default Domain Decomposition

MarDyn supports a standard, static domain decomposition, which divides the simu-
lation area in equally sized cuboids which are assigned to the processors. The size
of these cuboids only depends on the domain size and not on the distribution of the
molecules. Since this is the most basic domain decomposition that also doesn’t require
any rebalancing it is used as baseline for the performance tests.

3.2.2 k-d-Tree Decomposition

The main decomposition algorithm is an implementation of a k-d-tree, even though
it doesn’t fully implement it in the way described in the previous chapter. For ex-

10
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ample it turned out, that the communication cost that comes from the partitioning
of the cells is negligible so it isn’t calculated. One of the reasons for that is because
MarDyn uses the so called overlapping communication strategy mentioned shortly in
[Niel2], where asynchronous communication used to minimize the communication
cost. The processors initiate the communication and while the data is transferred over
the network they calculate the inner cell particle interactions. If they are done they
check if the communication is already finished and if that’s the case they continue
with their calculations. Only when the communication actually takes longer than
the force calculation there is a measurable performance degradation because of the
communication. Even though it uses a scheme where only particles and not the forces
between border cells are communicated, the other part of the separation costs, the costs
for the double calculations, aren’t treated in a special way either (see the next section
for more details). Despite of that the decomposition can still recursively evaluate all
possible decompositions for each possible subdivision, when considering its quality.
This is only used to reduce the differences in the processor loads, where in Section
2.2.5 the main motivation was to reduce the separation costs. At the beginning of the
simulation there are some parameters which can be defined. The most important one
is probably the number of iterations between two rebalancing steps. Additionally it
could be defined whether the algorithm splits tree nodes along the axis, along which
the node in question is still the biggest or if it should always search in the direction of
every axis. Additionally one could define the processor threshold, below which the all
decompositions for all subdivisions are calculated (further called full search threshold).
There is also already an extensive infrastructure for outputting decomposition and
molecule data.

3.3 Cost Estimation

The cost estimation function currently used in MarDyn is pretty basic. It assumes that
the time needed for calculating the forces only depends on the squared number of
molecules. Let i be a certain cell, let n(i) be the number of molecules in i, and K(7) be
the neighbours of i, then the load calculation function for each cell i is:

1
n(i)* + 5 Y n(i) xn(d) (3.1)
deK(i)
This calculation is a heuristic estimation for the the needed force calculations. There
are at least two possibilities of how to interpret this equation. In [Nie+14] it was said
that a slightly modified version, where the first term was multiplied by 3 and not by

1, should represent the number of distance calculations. Another interpretation and

11
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which is further assumed in this paper uses the exact version of Equation 3.1 and it was
mentioned in [Sec+16]. Here the % represents the fact, that for every molecule in a cell,
some of the molecules in the neighbouring cell will be outside of their cut off radius.
This means that only the distance between the two particles, but no forces have to be
calculated, which as mentioned is normally cheaper than the force calculations. This
seems to be preferable to the first interpretation, since for bigger molecules the force
calculations are far more expensive than the distance calculations. Still this heuristic
is overly simplistic since for one it doesn’t take into account, whether a neighbouring
cell shares a face, an edge or only a corner. In the latter two cases there are generally a
lot less particles inside of the cutoff radii of particles in the original cell. This can be
seen in the previous Figure 2.2, where the blue particle is close to the corner but the
circle defined by the cutoff radius still covers more area of its origin cell and its edge
neighbours than of the corner neighbours. The heuristic also doesn’t take into account
that for cells inside of a processor area particle interactions are only calculated once
for both involved particles as described in the previous chapter. The implementation
technically didn’t follow either model, because here i € K(i), which meant that the
interactions inside of a cell were counted one and a half times. Since this behaviour
was documented nowhere, it was assumed to be a bug. It turned out it didn’t really
affect the quality of the load balancing algorithm. Despite of that, the bug was fixed for
the measurements later in this thesis.

3.4 Existing Support for Heterogeneous Hardware

The load balancing algorithm of MarDyn already supports heterogeneous hardware.
This was a somewhat recent addition described in [Sec+16]. To make the support
of arbitrary heterogeneous hardware easier it is necessary to define a constant ratio
between the performance of the different processors. This is done by measuring the
performance of each processor. If the domain should be split at a load ratio of x%, then
the processors have to be assigned in such a way, that the quotient of the sum of the
performances of one side and the sum of the performances on the other side is as close
as possible to x%. The performance measurements can either be done beforehand and
simply be provided to the simulation at the start or they can be calculated dynamically.
Only measuring the time in the dynamic case isn’t enough, since this would mean
that a faster processor with more load is as fast as a slower processor with less load.
So somehow the load has to be taken into account, and this was done here with a
FLOP counter, so the performance was measured in FLOPs per second. But even
then the dynamic version still has a problem: It can be generally observed that the
performance of a processor that has only a few particles is lower than that of the

12
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same processor with more particles. This can lead to a negative feedback loop where
processors with few particles to begin with, have slower flop rates than they would
have with more load, so they get even less particles, which makes them even slower,
and so on. It is important to note that this effect is more dominant in structures with
very high differences in performance, which means that the slower processors already
get only very few particles in the initial decomposition. So it is better to calculate the
performance in the beginning. Since the initial performance is still only transformed
into a constant, the lower FLOP rate in a processor with only a few particles is not
taken into account.

13



4 Improvements to the Existing Load
Balancing Algorithm

4.1 General

The main focus of this work lay on improvements of the load estimation though some
improvements were made to the general algorithm as well. For the load calculation
function it can be observed that it would be perfect if the load ! and the time ¢ it actually
took to do the calculations in an area are directly proportional, meaning that there
is some constant ¢ so that t = c-[. This is because the algorithm would obviously
be perfect if the load estimation function would actually return the time needed and
because the algorithm would work the same way, if you replaced the load values !
with k = é As mentioned before this only relates to the actual calculation costs, the
separation costs are not modelled in the load calculation function found in MarDyn
and this was also not changed in the work for this paper.

Used Scenarios

For the benchmarks of the improvements several scenarios were used. One was already
given and the others were created with the help of so called scenario generators. The
given scenario was a domain filled with clusters made of Ethane (as can be seen in
Figure 4.1). This is also the smallest scenario used with only 512,000 molecules and
roughly 13,000 cells. It is further labelled ethan. The first generator generates a sphere
of higher density inside of an otherwise homogeneous lower density domain (as seen
in Figure 4.1). With it two concrete scenarios were created, one where the sphere is
directly in the center (mid) and one where it is in the corner of the simulation domain
(cor). Both have roughly 350,000 cells and 4.2 million particles. The second generator
could generate two different phases with different densities, which are separated by
two axis aligned planes (as can be seen in Figure 4.1). It can be parametrized with the
starting point of one of the phases relative to the size of the full domain along an axis
and the size of the phase, also relative to the domain length along the same axis. The
names of the concrete scenarios generated contain these two parameters in their name,
so in the scenario 40_50 the first phase starts at 40% of the length along the y axis and

14
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Figure 4.1: The scenarios ethan, cor and 40_50

goes to 90% = 40% + 50% of the domain length (see Figure 4.1). The other phase would
then go from 90% to 100% and from 0% to 40%. Several scenarios were generated with
it and they all contain ca. 280 million particles in around 65,000 cells. As part of this
work this generator was also improved so that the two phases can contain different
molecule types (but still only one type per phase). Only one scenario was generated
with this improved version, since the generator was generally not suited for molecule
types that consisted of more than one potential center. Since it doesn’t take the sizes of
the molecules into account, it could happen that these molecules were generated too
close to each other which would lead to problems in the simulation. The generated
scenario is further labelled 2mol and it contained more than 5 million molecules in
160,000 cells. There were three molecule types used, Argon, Ethane and Cyclohexane.
Argon is the easiest molecule with only one Lennard-Jones-Center and it is the molecule
present in the generated simulations with only a single molecule type. Ethane is a bit
more complicated but still consists of only two Lennard-Jones-Centers and it is only
present in the ethan scenario. Cyclohexane was used as the second type (in addition to
Argon) in 2mol, since it is far more complex, with 6 Lennard-Jones-Potentials and one
Quadrupole.

Result Format

For the representation of the results up to four times will be given in the result tables:
the total simulation time, the maximum force calculation time, the minimum force
calculation time and the average waiting time. The total simulation time is the time
needed in the main loop of the program. This excludes the pre-processing (things like
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loading the molecule information, and the time needed for the vectorization tuner)
and post-processing, which is mostly information output. The force calculation time
of a processor is the time it needed for calculating all of its interactions. The waiting
time of a processor is the difference between its calculation time and the maximum
calculation time. The average can be calculated by subtracting the average calculation
time from the maximum calculation time and it is a measure for the maximum possible
performance improvement. This can be illustrated with an example: Assume that half
of the processors have to wait ten seconds, while other half all take the maximum force
calculation time of twenty seconds. Then the average wait time is five seconds. To
balance out the load, one could imagine that the faster processors each transfer five
seconds of their calculations to the slower processors, which would mean that every
processor takes the same amount of time, and the simulation overall is five seconds
faster. Such a precise load transfer is of course not possible and transferring load might
even incur new overhead (see separation costs), which would change the overall load.
Still this thought experiment shows that the average waiting time is a rough estimate
for an upper bound for the possible performance improvement.

The load balancing algorithms that already existed and are used as baselines are
the standard domain decomposition (DD) described in Section 3.2.1, the old k-d-
decomposition (KDD) described in Section 3.2.2 and the heterogeneous k-d-decomposition
described in Section 3.4 (hetero KDD). The improved k-d-decomposition algorithms
that were used and that are described in the following sections, are the one based on
the quadratic model (QM), the one based on the vectorization tuner for one and two
molecule types (tuner) and the one based on the vectorization tuner for heterogeneous
systems (also for one and two molecule types) (hetero tuner). All of these were compiled
with support for the AVX-vectorization for the force calculations implemented in Mar-
Dyn and if not otherwise mentioned they use a full-search-threshold (see Section 3.2.2)
of 8 processors and a sb-threshold (see Section 4.5) of 4, which turned out to be good
default values.

All mentioned times are given in seconds.

4.2 Single Molecule Type

4.2.1 General

To improve the present load estimation function in MarDyn a first idea would be to
simply change the already existing formula (Equation 3.1) which was based solely on
the molecule count in each cell. It would be a lot better if one could use the actual
time processors need to calculate a certain amount of interactions to achieve a better
performance. This is especially important for simulations with more than one molecule
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type on heterogeneous hardware since an adjustment of the original formula would
require run time information anyway to measure the performance difference between
processors and the different calculation costs for each molecule type.

4.2.2 Quadratic Model
Without Linear Parameter

The simplest way of integrating measurements into the simulation is to look at the
results of a simulation run. MarDyn already outputs the size of the area and the
number of particles each process works on, when the simulation finishes. With little
change it then also supported the time it needed to calculate the molecule interactions
per process. Since the basic load estimation is based on (linked-)cells and not on the
k-d-tree nodes, the measured node values (particle count and needed time) have to
be divided by the number of cells owned by that process, so that one gets at least an
average value for the cells. The simplest model, that goes beyond the original model
described in Equation 3.1, is to assume that every cell needs an additional constant
time to be iterated over, so there is already a load ¢ associated with an empty cell. This
can be represented by following equation (base on Equation 3.1, which is further called
quadratic model:

1
c+n(i)*+

N

Y n(i) xn(d) 4.1)
deK(i)

This assumption was supported by the fact, that in the old decomposition processors
that got bigger domain areas took longer than the their load suggested. ¢ now has to
be somehow determined. If [ is the calculated load of a process (the sum of Equation
3.1 for all cells in the process), t the time a processor actually needed (measured after
a simulation run) and #cells the number of cells in a processor, then the following
equation should hold, if the new model would be perfect:

t l l
wcells <#cells + C) = Mcells T € (42)

While t denotes a time, I and c represent the load. As mentioned before, if the
decomposition is perfect, time and load should only differ by a constant factor, which is
here represented by m. Since this equation can be calculated for every processor it made
sense to use the values of all processors and use these to generate a regression line (with
c-m and m as unknown parameters). Plotting these values showed promising results
as can be seen in Figure 4.2. The results of the regressions are given in Table 4.1. The
problem with this model is that it cannot easily be determined at run time (at least not
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Figure 4.2: Two examples for the regression lines. The first image shows the results
line for the cor scenario, where the regression is the most stable, while the
second image shows the result for the scenario 40_50, where the std. errors
are far bigger (see Table 4.1). The interception point with the y-axis is m - ¢
the slope is m.
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Scenario | Procs. m-c std. error m std. error | constant ¢ = %
mid 140 | 242-1073 | 1.32-107° | 1.32-107° | 4.85-10° 1840
cor 140 |1,81-10% | 515-107%| 1.34-107° | 8.51-10~" 1380
25_50 112 | 1.34-107% | 6.75-107* | 1.36-107¢ | 8.54-10~° 1030
40_50 112 | 2.38-107* | 8.64-10%| 1.37-107° | 1.19-10°8 174
ethan 84 1.63-1072 | 6.27-1073 | 2.82-107° | 6.63-1078 5800
ethan 56 728-1073 | 4.83-1073 | 297-107° | 452-10°8 2450

Table 4.1: Different results for the regression lines; the high std. errors for the ¢ constants
show, that only the result of the first regression is somewhat stable. - c is a
time, m is time per load and with that c is a load value.

in the current structure of the program) so the constants would have to be calculated
manually for every particle-processor-combination and then provided at the start of
every new run (or at compile time). Another problem that can be seen in Table 4.1 is
that load constants differ wildly from scenario to scenario. m * ¢ should technically be
independent from the particle type, since the constant time needed to iterate over a
cell without calculating anything should be independent from the contained particle
type and the conversion factor m should only be dependent on the molecule type used
in the simulation, because the load time ratio only depends on the type of the used
molecules. A clear explanation for why this is not the case in this table is the growing
standard error in the result of the regression. This is shows the biggest weakness of this
approach. The big standard error can be explained by the fact, that the averaged time
results are not always as spread out as in the first graph of Figure 4.2 but are clumped
together as in the second graph of the same image. For the performance evaluation
still some constants had to be picked. For argon this constant was defined as 1650 and
for ethan 5200. These values were chosen because they relatively close to the value in
Table 4.1 with the least amount of error, but they also take into account, that the other
regression results tend to lower values for ¢, even though their std. errors increase
drastically. When used in the simulations these values also lead to very good results
(see Section 4.2.4).

With Linear Parameter

Since the simulation also contains operations that are linear in the amount of particles
per cell (for example the velocity update with the calculated forces in each iteration), it
was only natural to add a parameter that is linear in the number of molecules to the
above model. So p in the following equation is the amount of particles in a processor
area, while 7 is the new unknown constant converting the load associated with each
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particle into time. The other constants are defined as above.

c+p-n(i)+n(i)2+% Z%)n(i)*n(d) (4.3)
deK(i

The equation for calculating p and c is the following, when o is the number of particles
for the process in question and the rest of the variables are defined as in the previous
section:

! =m : + 0 +c —m;er- L+m-c (4.4)
#eells #cells ! #cells - #cells Pacells ’

While at first sight it might seem that this equation can model the reality in a better way,
if one looks at figure 4.2, the previous model was already pretty good. The big standard
errors are probably a result of the bad sample points for the regression and not because
of the bad model. So in the end the additional parameter seems unnecessary and this
was supported by the results of the regression of the new model, where the results
were far less stable than in the original one. It even lead to a negative cell constant c,
which of course contradicts the modelled reality where a processor cannot take zero
or less time for iterating over a cell. Plugged into the simulation it turned out that as
expected this model gave worse results than the model without the linear parameter
which is why this approach is not further discussed here.

4.2.3 Vectorization Tuner

As mentioned before the load estimation is done on a cell level, so it would also be
better to use times measured at a cell level and not at a tree-node level as done in the
previous section. Since starting and stopping timers incurs an overhead, it doesn’t
seem feasible to measure the times for each cell, while the simulation is running. A
better approach would be to measure the time each processor needs to calculate the
forces between a certain amount of particles in a cell before the simulation starts and
use them as it goes on. MarDyn mostly implemented this functionality already in a
class called vectorization tuner. It can generate cells which can be placed arbitrarily in
a simulation area. These cells can be filled with an uniformly randomly distributed
molecules of different types. Then the tuner can calculate the inner interactions for a
single cell or the neighbour interactions for two different cells (not both at the same
time) repeatedly for a given amount of iterations and return the time needed. This was
used to generate four different time profiles, which contain these measurements for
different amounts of particles in the cells. One contains the measured times for the
inner cell interactions, one for the interactions between two neighbours that share a
face, one for two neighbours that share an edge and one for neighbours that share a
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corner. It is important to differentiate these, since if you assume that all molecules are
uniformly randomly distributed! in the domain, it is more likely for a certain molecule
to interact with molecules in a neighbour that shares a full face instead of only an edge
or a corner. This can be seen in Figure 2.2 for the two dimensional case, where the blue
molecule is close to the corner but its cutoff radius still encompasses more space of its
own cell and its edge neighbours than of its corner neighbours. This means it normally
also takes less time to calculate the interactions with a face neighbour than an edge
neighbour with the same amount of molecules, which makes the separation necessary.
The difference in time can be seen in Figure 4.3, where the different tuner profiles are
compared.
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Figure 4.3: A typical tuner profile for Argon on the Intel Xeon E5-2697 v3 for all
different neighbour types. The 'zig-zag’ in the black measurements is a
result of the vectorisation of the calculations.

For the inner interactions it is clear that a sensible time profile should consist of the
time a processor needs for every amount of particles from 0 to a certain amount x. x

IThis is the only sensible assumption if nothing is known about the particle distribution beforehand.
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should be bigger than the maximum number of particles in a single cell in the whole
simulation, so that for every possible molecule count a time is stored. For the neighbour
interactions a similar idea would be to measure the time for every possible combination
of molecule amounts less than x in the two cells. This of course takes quadratic space
and even worse quadratic time. To avoid this overhead the implementation reduces the
case where two neighbouring cells have particle counts x and y, with x # y to a case
where both have the same particle count by assuming that both have | ,/x*y] particles.
If x is roughly y, this should never be a problematic assumption, but even if this is not
the case it should also work, at least if a smooth particle distribution is assumed. It can
be observed that the maximum number of possible interactions between neighbouring
cells is x - y, which is of course roughly (|,/x*¥])? the amount of interactions implied
by the simplification.

So the resulting profiles can then be stored in four different, single dimensional
arrays. When the load needs to be calculated for the inner cell interactions, the load
value is simply the entry with the same index as the number of particles in the cell.
For the neighbour profiles the above mentioned simplification (| ,/x*y]) is used as a
look up index. As the number of interactions and with that the time the vectorization
tuner needs to measure these values increases quadratically in the number of particles,
it doesn’t make sense to calculate the times for too many particles, especially if there
are no cells that have that many particles in the entire simulation domain. Since this
number is generally not known before the simulation, an out of bounds access on the
arrays has to somehow be avoided. The simplest but not the best way of doing that, is to
cap the number of particles, meaning that if there would be an out of bounds access the
largest stored value is returned. This is only acceptable if this value is never exceeded
by a large margin and/or if this doesn’t happen too many times in the simulation. A
better solution can be found when looking again at the graphs of the time profiles
(Figure 4.3). It seems that time needed per (unordered) molecule pair converges to a
constant ¢, when the number of molecules/molecule pairs increases. The overall time ¢
needed for a certain amount of particles is extracted from the profiles, by calculating
the median of the last 10% of the measured values. To calculate the constants from it
the following equations can be used: Let x be the index where t was found in the array,
which is equal to the number of particles in the main cell (and its neighbour). Then if
the model would be perfect, the relation between ¢ and ¢ can defined as follows:

x(x—1
Linner = Cinner(z) (45)

tneigh = CneighCXY (4.6)

To calculate c one simple solve the above equations for it. The factors one the right side
are the number of possible interactions/the number of (unordered) molecule pairs. If
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one now wants to extrapolate load values, the same equations can be used to calculate
the now unknown ¢, which represents the load in this case, by using the number of
particles, that made the extrapolation necessary, (or the simplification for two cells) and
the previously calculated c. It is important to note, that c,,;¢;, can differ for different
neighbour types, so in the end one constant is needed for each of the four profiles.

4.2.4 Performance Results

Scen. (Procs.) DD KDD oM tuner
mid (196) 193/157/138 | 81.9/46.4/25.7 | 46.2/25.7/5.19 | 43.4/25.8/5.23
cor (196) 199/163/147 | 75.6/39.1/21.8 | 41.1/23.6/6.42 | 41.8/23.7/6.47
25_50 (140) | 76.2/53.7/269 | 57.6/34.4/6.6 | 53.2/33.6/6.09 | 52.9/33.7/6.06
ethan (84) 67.7/62.6/28.2 | 56.8/479/11.8 | 57.1/47.6/11.4 | 56.6/47.8/11.4

Table 4.2: Times measured for simulations with 300 iterations and only one rebalancing
step at the start in the format total simulation time/maximal force calculation
time/average wait time

A comparison of performance results for the previously mentioned models can be
found in Table 4.2. It shows that the quadratic model can improve the performance in
some scenarios by roughly 45%. In others not much changed, though as the average
wait time indicates, the old k-d-decomposition was already so good that there wasn’t
much room for improvement. This was the case when there weren’t any processors
that had an area that was much bigger than the other processor areas. In all cases the
result of the quadratic model and the vectorization tuner are pretty much identical,
which is quite surprising, considering the simplicity of the model. Even in this case
the vectorization tuner is always preferable, because the model was too error prone in
some cases and also because the tuner is easier to adapt for heterogeneous systems and
multiple molecule types.

Until now the vectorization tuner calculated enough values, so that the array corre-
sponding array was always bigger than the maximum number of molecules in a cell.
That means that no load values had to be extrapolated. This is normally quite feasible
since the the calculation for 0 to 350 Argon particles takes less than 3 seconds. Addi-
tionally these profiles can be saved and reused between two simulation runs, though
it should be ensured, that the same molecule types are used and that the simulations
are run on the same hardware. Still it is quite interesting to look at the results when
some values have to be extrapolated. As can be seen in Figure 4.3, it is clear that below
50 molecules the graph didn’t yet converge to a constant, so it wouldn’t make sense
to calculate less values than that. For this measurement it is also important to look at
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how many particles were in the cells, so that it can be seen whether extrapolations were
even needed. The results are shown in Table 4.3.

Scen. (Procs.) | max. Mols. 50 75 100
cor (196) 129 459/23.5/6.18 | 41.5/23.5/6.28 | 40.9/23.6/6.32
mid (196) 118 52.4/26.6/5.82 | 48.2/25.9/5.23 | 46.3/26.0/5.41
25_50 (140) 86 55.3/33.6/5.91 | 53.6/33.3/5.56 | 53.3/33.7/5.99
ethan512 (56) 255 80.7/68.9/14.8 | 80.8/68.9/14.9 | 81.1/69.0/15.0

Table 4.3: Times measured for simulations with 300 iterations and only one rebalancing
step at the start in the format total simulation time/maximum force calculation
time/average wait time. The column ‘max. Mols.” denotes the maximum
number of molecules in a cell for all processor. In all scenarios nearly all
processors owned at least one cell which came close to this amount. The
numbers in the following columns denote the maximum molecule count for
which the tuner values were measured (so for bigger molecule counts they
had to be extrapolated)

As can be seen the results for only using profiles up to 50 molecules are already pretty
good. For the cor and mid scenario the speed up was minimal. Also for the scenarios
with even more molecules per cell there wasn’t even a detectable speedup, which can
probably be partly explained by the fact, that their k-d-tree structures are relatively
stable, meaning they change only little, when the load balancing values change slightly.

These test cases used only few hundred iterations with only one rebalancing step,
but in a real scenario the simulation should probably run for a few thousand iterations
and since the molecules can move quite a bit during that time, the tree should also
be rebalanced quite a few times. To see if that would affect the speedup, additional
benchmarks were created, where the simulation ran for 5000 iterations. Here it turned
out that all of the used scenarios were pretty static, so the runs with less than 1000
iterations between iterations where a bit slower than simulations with 1000 iterations
between rebalancing steps. This can be seen in Table 4.4. These results show at least,
that the rebalancing steps don’t take a lot of time because even an 50-fold increase in
total rebalancing steps only increased the total running time by a small amount.

4.3 Multiple Molecule Types

4.3.1 General

While the overall simulation already supported more than one molecule type, the k-d
decomposition and the vectorization tuner only assumed that one type was present.
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Scen. (Procs.) | it. between reb. steps KDD tuner
cor (196) 1000 1322/670/319 | 738/411/318
cor (196) 200 1322/663/320 | 744/403/318
cor (196) 20 1344/662/320 | 796/402/317
ethan (84) 1000 957/807/612 | 954/805/613
ethan (84) 200 974/814/614 | 975/804/614
ethan (84) 20 977/803/614 | 974/802/615

Table 4.4: Times measured for simulations with 5000 iterations in the format fotal
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Figure 4.4: The first graph shows a tuner profile for a cell with the two molecule types
Argon and Cyclohexane on the Intel Xeon E5-2697 v3 concerning only the
inner cell interactions. For the values of the mixed interaction there are
always as many argon molecules as Cyclohexane molecules and the number
of molecules is their sum. The second graph shows the quotient of the
measured times for the Cyclohexane (red) and the Argon interactions (blue).
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This is of course problematic since the time needed to calculate the forces can differ
heavily from particle to particle. This can be seen in Figure 4.4 where the cost of
different interaction types is compared. To support more than one particle type, every
cell needs to store the number of contained particles for each type instead of only
storing the amount of total molecules in the cell. This means the memory requirements
increase for every additional type (O(n * m), where n the number of types and m is the
number of cells). This gets even worse for the vectorization tuner since the number of
measured times grows exponentially in the number of particle types, at least if you
measure the times of every particle configuration, when there can be up to x; > 0
particles in the cell for each particle type i. The measured times are then stored in an
n-dimensional array, where the index in the i dimension corresponds to the number of
molecules of type i in the cell. Analogous to the vectorization tuner for single molecule
types it is assumed that the number of molecules of the same type is equal in two
neighbouring cells. Again for the look-up if you have actually have x; molecules of
type i in one cell and y; in the other than the look-up index in the i’ dimension is
(L\/WJ ). The number of measured times can again be reduced by using the same
strategy as mentioned in Section 4.2.3, where one uses a constant to estimate costs when
the number of particles in a cell gets too big. It is important to note that if you have
more than one particle types there needs to be a constant defined for every interaction
involving different molecule types. If you assume that one has molecules of type A and
B, then the interactions of A and A, B and A and B and B all (generally) take a different
amount of time to be calculated (this can also be seen in Figure 4.4). The interactions
between molecules of a single type are further called homogeneous interactions, the
interactions between molecules of two types heterogeneous interactions. The total
number of different interactions and with that the number of needed constants for each
neighbour type is:

#constants = n + <Z> =n+ %n(n -1) 4.7)
n is the number of particle types and in the sum it represents the number of homo-
geneous interactions. First the constants for the homogeneous interactions c;;, i € [1]
have to be calculated, followed by the constants for the heterogeneous interactions
cij (=c¢jp), i,j € [n],i # j. The former can be done exactly the same way as in 4.2.3,
using the measured times of scenarios where only molecules of type i are present. The
heterogeneous interaction constants are more problematic, since the can only occur,
when there are particles of multiple types in a cell. In such a cell there are always
homogeneous and heterogeneous interactions. In the simplest case where only two
molecule types i and j are present, the total amount of time t;,;,; can be approximated
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by:
trotal A £+t + 1 (4.8)

t; (tj) is the time needed to calculate the homogeneous interactions between all
molecules of type i (j) and t;; is the amount of time needed for heterogeneous in-
teractions. For simplicity other factors that increase the time are ignored. Assume that
x; (x;) is the number of particles of type i (j) in this cell. Then ¢; (¢;) can be approximated
by the time the tuner needs for a cell that contains only x; (x;) molecules of type i (j)
and nothing else. These times are further called u; and u;. With this approximation t;;
can be approximated by:

tij & trorar — Ui — Uj (4.9)

To now extract the constant ¢;; from t;; one needs to look at the number of possible
heterogeneous interactions (for two molecule types), again under the assumption that
two neighbouring cells have the same amount of particles of each of the two types.

Number of heterogenous inner cell interactions: x;x; (4.10)

Number of heterogenous neighbour interactions: 2x;x; (4.11)

For the inner cell interactions all of the molecules of type i can interact with all molecules
of type j. For neighbour interactions this term has to be multiplied by two, because
all molecules of type i in the main cell can interact with all molecules of type j in the
neighbour cell, while all molecules of type j can interact with all molecules of type i in
the neighbour cell. Now we assume that t;,..,, is directly proportional to the number
of possible interactions, which cij as a conversion constant:

tZ'mer ~ Cinnerxixj (412)

i
1S xx; (4.13)

neigh __ c

tl] g

With these approximations and the Approximation 4.9 ¢;; can now be calculated as:

inner (tinner _ ulﬁner _ uiﬁner)
i i total i
c;r;ner ~ Y ~ /I (4.14)
] xix]- xix]-

neigh (tneigh _ inner _ uinner)
neigh , "ij  \total ii ji (4.15)
Y 2x;x j 2x1-x]-

When all of the ¢;j,7,j € [n] have been calculated out of bounds accesses to the multi
dimensional array can be handled correctly. If you assume that the access indices where
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x; for all dimensions i € [n], then the time/load fex, is extrapolated as follows:

inner - innerx(x — 1) 3 . inner

toxtra = )_ Cif —  t Y Y o (4.16)
i=1 i=1j=i+1

neigh ! nez h o ! u neigh

s = Z 8 —I—Z E 2cj; g XiXj (4.17)
i=1 i=1j=i+1

The first sum in both equations represents the time needed for the homogeneous inter-
actions, while the second nested sum represents the time needed for all heterogeneous
interactions. Even though the above model would support arbitrary many molecule
types, MarDyn right now supports only two different types in the load balancing.

4.3.2 Performance Results

Scen. | Procs. DD KDD tuner
2mol 252 255/236/14.8/116 | 281/261/14.1/143 | 186/149/106/29.4

Table 4.5: Times in seconds for a simulation with 300 iterations and only one rebalancing
step at the start in the format total simulation time/maximal force calculation
time/minimal force calculation time/average wait time

As explained earlier only one scenario with two different molecule types was gener-
ated. As Table 4.5 shows, the traditional load function in this case is even worse than
the static decomposition. A reason for that is probably the big difference in calcula-
tion time between Argon and Cyclohexane (see Figure 4.4), which renders the load
estimation useless. The vectorization tuner improves the total performance (including
the communication and decomposition times) by roughly 37% compared to the static
case and by 51% compared to the old k-d-decomposition. Despite of that the average
waiting time indicates, that the overall simulation time can still be improved by roughly
16% even when the vectorization tuner is used.

It is important to note, that in the used benchmark the size of the two phases where
equal. If the Cyclohexane molecules were replaced with the cheaper molecules like
Argon, so that there would still one processor left with only Cyclohexane molecules,
then the expected speedup would be a lot bigger. The reason for that is, that the total
simulation time would still be roughly the same as in the scenario above, because the
Cyclohexane processor would still need ca. 260 seconds, while the total load and with
that the time needed in a perfect decomposition would be drastically lower. Because of
the limits of the scenario generator this could not be fully exploited.
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4.4 Heterogenous Hardware

4.4.1 General

The existing way of dealing with heterogeneous systems in MarDyn was already
presented. To fully make use of the more detailed values the vectorization tuner
provides, a simplification of the hardware structure was needed. It has to be separable
into two clusters by an mpi-rank k, so that all processor with a lower rank than k are
of the same type, and all processors with an equal or bigger rank than k also are of
the same type. This means that only two different processor types are allowed. The
decomposition splits the domain in the first recursion level in such a way, that each of
the nodes gets all processors of one of the clusters as processor list. If that is the case
the decomposition algorithm can work as if there weren’t different clusters to begin
with. So the only addition to the algorithm that is needed, is to find an initial split.
Assume that there is a list of split candidates, then the cluster with the lower mpi ranks
(the right cluster) calculates the loads of the right sides of all possible cuts with their
vectorization tuner values, while the cluster with the higher ranks does the same for
the left side. So if the right processors are slower the right side will have a generally
higher load than the left side for the same amount of particles. So this is the point in
the algorithm were the different processor speed come into play. Now from all split
candidates the one is chosen, where the ratio between the left and the right load is
closest to the ratio between the number of left and right processors.

4.4.2 Performance Results

The benchmarks that can be seen in Table 4.6 were run on cluster consisting of two
different processor types, one was the SandyBrigdge-EP Xeon E5-2670 with 8 cores per
socket and the other was the AMD Bulldozer Opteron 6274) with 16 cores per socket.
For every physical core there was one mpi process. Even though these processors have
different architectures, it could be observed (see Figure 4.5) that quotient of time it
takes for one of these cores to calculate a interaction converges to a constant relatively

Scen. | Procs. KDD hetero KDD hetero tuner
cor6d | 64/128 | 65.4/43.7/16.6/27.3 | 53.5/36.4/13.9/22.5 | 31.5/22.0/10.1/6.40
2mol | 96/384 | 183/174/8.99/109 162/155/6.18/94.6 | 83.5/75.6/37.9/14.1

Table 4.6: Times measured in the format total simulation time/maximal force calculation
time/minimum force calculation time/average wait time; the number of processors
is given in the format Number of Xeon Processors/ Number of Bulldozer processors
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quickly. Interestingly this constant depends on the kind of interaction (if its an inner

* Main Cell x Main Cell Argon

® Main Cell x Main Cell Cyclohexane

* Main Cell x Face Neighbor Cyclohexane
Main Cell x Corner Neighbor Cyclohexane

"« e
., -

Time per Pair on Xeon / Time per Pair on Bulldozer

= T T T T
0 20 40 60 80 100

Number of Molecues

Figure 4.5: The quotient of the time needed to calculate a homogeneous interaction on a
Xeon processor and on a Bulldozer for different interaction types (different
neighbour types and different involved molecules)

cell interaction or an interaction with a face, edge or corner neighbour) and as it
turns out the Cyclohexane results are more stable than for Argon, which makes it
hard to tell whether the constants for ethan and Cyclohexane would be exactly the
same. Technically the fast convergence to a constant should imply that the approach
of assigning a single performance to a processor should work pretty well, but still
the heterogeneous k-d-decomposition didn’t fare well compared to the tuner (even
in the case with only a single molecule type). One reason for that could be that it
still uses the old load balancing algorithm which brings its performance down. It is
important to note that the maximum improvement in performance for the algorithm
that takes the heterogenous hardware into account compared to the hardware oblivious
algorithm depends heavily on the performance difference between the used processors.
How to calculate the maximum improvement was discussed in more detail in [Sec+16].
This means that in the presented case the comparison is not as interesting, since the
processors are quite close performance wise. It would be more interesting to compare
standard processors with accelerators or with special processors like the Xeon-Phi. It is
also interesting to note that one can reduce the case with more than one particle type
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to the same principles, since for outside viewer that only sees the total runtime of the
processors, it is indiscernible if the processor performs worse than another one or if it
performs the same but contains more of the expensive molecules.

4.5 Changes to the Splitting Rules of Decomposition
Algorithm

4.5.1 General

As mentioned before one could previously only globally decide whether the simulation
splits along the axis, where the k-d-tree node is still biggest or whether it should
always search in every dimension. The latter technically should result in slightly better
decompositions but the problem was that that it also created processor areas that were
very thin in one direction (see Figure 4.6), which should result in higher separation
costs. A better solution is to add a threshold (the sb-threshold), so that the simulation is
only allowed to search in every direction if the number of processors in a node is below
that threshold. This avoids the long thin nodes but it also means that the performance
probably won’t be heavily affected, since in the last few nodes the decomposition is
already pretty determined.

4.5.2 Performance Results

As can be seen in Table 4.7 the effect of allowing a split in all directions is minimal
even at higher thresholds. Even though no big performance improvement is visible,
the result is also a very interesting. While it is shown that splitting the domain only
along the biggest axis is sufficient most of the time, the results also clearly show that
the separation costs don’t have too much influence on the simulation, since otherwise
higher thresholds should lead to a lower performance. It is also possible that, the
slightly better load distributions are achieved, which offset the increase in separation
costs. In the only case where at least a speedup of 10% in the force calculation could be
measured, it can be observed that the generated nodes aren’t as thin as in the other
scenarios.
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Figure 4.6: The decomposition of 25_50 at with different thresholds. In the first image
every tree node is only split along the axis where it is still biggest. In the
second the algorithm was allowed to split in all directions, when a node
had less than 8 processors and in the last image the algorithm was allowed
to always split in any direction.

Scen. Procs. Threshold
0 2 4 16 32 infinite
ethan512 56 795/69.4 | 78.1/67.7 | 795/67.4 | 73.8/63.2 | 72.7/62.8 | 73.2/61.8
ethan512 84 56.0/48.6 | 56.7/47.9 | 56.8/47.9 | 54.9/45.6 | 54.4/46.5 -
cor 196 | 41.0/22.3 | 40.7/20.9 | 41.8/23.7 | 41.9/20.8 | 42.4/20.2 -
mid 196 | 43.1/26.2 | 43.4/26.1 | 43.4/25.7 | 44.4/25.5 | 449/25.5 -
25_50 140 | 63.5/43.8 | 65.4/443 | 52.7/33.6 | 53.7/30.4 | 52.6/30.1 | 57.2/31.6

Table 4.7: Times measured for different thresholds with the vec. tuner in the format total
simulation time/maximal force calculation time; the '-" entry indicates that there
was an error in the domain decomposition, which crashed the simulation

32




5 Conclusion

This work presented an efficient way of integrating time measurements into the load
estimation function of a standard k-d-decomposition algorithm. While it was shown
that a modified heuristic can be as good performance wise, the time measurements
were still more flexible and more robust.

This was shown when these measurements were used to support additional molecule
types, which is hardly doable without some time measurements at some point. While
the decomposition is still not perfect, it performed much better than the old, molecule
type oblivious algorithms. It turned out that here a bad load estimation can be even
more harmful to the running time than not doing any load estimation.

The time measurements were also used to reimplement the support for heterogeneous
systems, which already existed for the old load estimation function. Despite its
restrictions on the underlying hardware architecture, it showed that at least in these
cases it could outperform the old decomposition for arbitrary heterogeneous systems.

Last but not least changes to the splitting algorithm of the decomposition algorithm
were made. While they didn’t increase the performance they showed that even k-d-
decompositions with a lot of nodes with a bad volume to surface ratio can still perform
well.
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6 Future Work

Even though the cost estimation based on the vectorization tuner improved load
balancing by quite a bit there are still some things left to do.

One of them is to smooth the vectorization tuner profiles, since currently there are
quite some differences between two consecutive measurements (as can be seen in Figure
4.3). One way to achieve this would be to exchange the results of the vectorization
tuner between all processes of the same type, so that every processor can calculate
the average over all these values. This was already implemented but was removed
again, when the support for heterogeneous architectures was introduced. Here it has
to be ensured that processors of different types don’t exchange their tuner data. Before
that happens though, it is important to change the uniform molecule generator to use
different seeds for different processors, otherwise all processors measure very similar
values. Another way to smooth the vectorization tuner values would be to apply a filter
which averages the values of each measurement with its neighbours.

The part of the load balancing algorithm that still needs the most changes is probably
the algorithm for heterogeneous systems. The heterogeneous decomposition right now
only supports two clusters of different types as descried above. This is quite hard to
change since the algorithm gets more complex when more clusters are present.

A far simpler version of this algorithm could also be used for homogeneous ar-
chitectures. Here the splitting planes should cut the domain in such a way, that two
processors that are in the same node/island are separated as late as possible. This might
improve communication times, though it is questionable whether the improvement
in communication time will offset the more complex partitioning algorithm. Because
of the overlapping communication this also will only help in architectures were the
different island are separated by a slow connection.

It is also possible to re enable heterogeneous support for arbitrary heterogeneous
structures. Since the graphs (see figure 4.5) show that at least for the processors used
for this work the difference in performance converges to a constant relatively quickly ,
these constants can be used to adapt the already existing support for heterogeneous
hardware to the vectorization tuner values. Compared to the new algorithm for the
heterogeneous system support this has the disadvantage, that the tree can now cut
through cluster boundaries again, though it has to be further investigated if this is
really a problem with overlapping communication.
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